

Unit 2b Study Guide

(Ratios and Proportional Relationships:
Proportions and Unit Conversions) **CALCULATORS ALLOWED!**

Name: _____ Period: _____

Unit 2b Study Guide

(Ratios and Proportional Relationships:
Proportions and Unit Conversions) **CALCULATORS ALLOWED!**

Name: _____ Period: _____

Page 1: Proportions

(#1-3) Find the missing value in the proportions:

$$1.) \frac{p}{12} = \frac{5}{4}$$

$$2.) \frac{2}{7} = \frac{5}{t}$$

$$3.) \frac{r}{3} = \frac{20}{12}$$

(#4-6) Use the correct symbol (<, >, or =) to compare.

$$4.) 5,000 \text{ grams } \bigcirc 6 \text{ kilograms}$$

$$5.) 80 \text{ fluid ounces } \bigcirc 12 \text{ cups}$$

$$6.) 25 \text{ feet } \bigcirc 288 \text{ inches}$$

Page 1: Proportions

(#1-3) Find the missing value in the proportions:

$$1.) \frac{p}{12} = \frac{5}{4}$$

$$2.) \frac{2}{7} = \frac{5}{t}$$

$$3.) \frac{r}{3} = \frac{20}{12}$$

(#4-6) Use the correct symbol (<, >, or =) to compare.

$$4.) 5,000 \text{ grams } \bigcirc 6 \text{ kilograms}$$

$$5.) 80 \text{ fluid ounces } \bigcirc 12 \text{ cups}$$

$$6.) 25 \text{ feet } \bigcirc 288 \text{ inches}$$

Page 2: Problem Solving with Proportions

1.) The average rainfall in Seattle is 75 inches a year. Is that greater or less than British Columbia's average, which is 98 centimeters a year? You may use the table below to justify your answer, *or* use a proportion.

inches (in)	1	10	50	75	100
centimeters (cm)	2.54				

Seattle's average rainfall is _____ than British Columbia's average rainfall. Justify your answer here:

2.) Red the Repairman fixed 476 leaky faucets in 2 weeks. How many faucets could Red fix in a month? Justify your answer using a proportion or table that includes unit rate.

Page 2: Problem Solving with Proportions

1.) The average rainfall in Seattle is 75 inches a year. Is that greater or less than British Columbia's average, which is 98 centimeters a year? You may use the table below to justify your answer, *or* use a proportion.

inches (in)	1	10	50	75	100
centimeters (cm)	2.54				

Seattle's average rainfall is _____ than British Columbia's average rainfall. Justify your answer here:

2.) Red the Repairman fixed 476 leaky faucets in 2 weeks. How many faucets could Red fix in a month? Justify your answer using a proportion or table that includes unit rate.

Page 3: Problem Solving with Proportions (Continued)

3.) On average, Sasquatch's foot grows 6 inches every 4 years. At this rate, how much would Sasquatch's foot grow in 7 years? Justify your answer using a proportion or table that includes unit rate.

4.) Last year, Jose rode his bike 120 miles. How many kilometers did he ride his bike each month?
(Hint: 1 mile \approx 1.61 kilometers.)

Page 3: Problem Solving with Proportions (Continued)

3.) On average, Sasquatch's foot grows 6 inches every 4 years. At this rate, how much would Sasquatch's foot grow in 7 years? Justify your answer using a proportion or table that includes unit rate.

4.) Last year, Jose rode his bike 120 miles. How many kilometers did he ride his bike each month?
(Hint: 1 mile \approx 1.61 kilometers.)

Page 4: Dimensional Analysis

1.) Bob the Builder converting 10 inches into meters for a house he is building in Mexico. What value should he replace x and y with?

$$\left(\frac{10.0 \text{ inches}}{1}\right) \left(\frac{x \text{ centimeters}}{1 \text{ inch}}\right) \left(\frac{y \text{ meter}}{100 \text{ centimeters}}\right)$$

$$x = \underline{\hspace{2cm}}$$

$$y = \underline{\hspace{2cm}}$$

2.) A turtle swims 20 feet every 5 seconds and wants to know how fast he is swimming in miles per hour. What value should he replace x and y with?

$$\left(\frac{20 \text{ feet}}{5 \text{ seconds}}\right) \left(\frac{x \text{ mile}}{5,280 \text{ feet}}\right) \left(\frac{60 \text{ seconds}}{1 \text{ minute}}\right) \left(\frac{y \text{ minutes}}{1 \text{ hour}}\right)$$

$$x = \underline{\hspace{2cm}}$$

$$y = \underline{\hspace{2cm}}$$

Page 4: Dimensional Analysis

1.) Bob the Builder converting 10 inches into meters for a house he is building in Mexico. What value should he replace x and y with?

$$\left(\frac{10.0 \text{ inches}}{1}\right) \left(\frac{x \text{ centimeters}}{1 \text{ inch}}\right) \left(\frac{y \text{ meter}}{100 \text{ centimeters}}\right)$$

$$x = \underline{\hspace{2cm}}$$

$$y = \underline{\hspace{2cm}}$$

2.) A turtle swims 20 feet every 5 seconds and wants to know how fast he is swimming in miles per hour. What value should he replace x and y with?

$$\left(\frac{20 \text{ feet}}{5 \text{ seconds}}\right) \left(\frac{x \text{ mile}}{5,280 \text{ feet}}\right) \left(\frac{60 \text{ seconds}}{1 \text{ minute}}\right) \left(\frac{y \text{ minutes}}{1 \text{ hour}}\right)$$

$$x = \underline{\hspace{2cm}}$$

$$y = \underline{\hspace{2cm}}$$