Worksheet – Free Energy

According to the 3^{rd} Law of Thermodynamics, the spontaneity of a reaction depends on the entropy change of the universe. We defined a new function, Gibbs' Free Energy, **G**, which reflects $\Delta S_{universe}$. The change in free energy during a chemical process is given by

 $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} < 0$ for a spontaneous process Whether or not a reaction will proceed, under standard conditions, at given T depends on whether it is endothermic or exothermic, **and** whether the entropy of the system increases or decreases during the reaction. When $\Delta G^{\circ} < 0$, the reaction, as written, will be **spontaneous**.

When $\Delta G^{\circ} > 0$, the **reverse reaction** will be **spontaneous**.

Using only the signs of ΔH^o and ΔS^o , predict the signs and temperature dependence for problems 1 and 2.

1. $CH_3OH(I) + 3/2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$

Methanol (CH₃OH) is used as rocket fuel. Look at the reactants and products an predict the sign of ΔS° .

$$\Delta S^{O}$$
 (> or <) 0

Predict the sign of ΔH^{o} knowing that this is a combustion reaction.

 ΔH^{o} (> or <) 0

Is the sign of ΔG° temperature depend for this reaction?

- 2. Predict the signs of ΔG° , ΔH° and ΔS° for:
 - a) the vaporization of water above 100°C
 - b) the vaporization of water at 100°C
 - c) Does ΔH° or ΔS° favor the vaporization process?

3. For the reaction

$$CO (g) + H_2O (g) \rightarrow CO_2 (g) + H_2 (g)$$

 ΔH° = -41.2 kJ and ΔS° = -135 J/K

a) Calculate ΔG° at room temperature, 298K.

b) Calculate ΔG° at 700 K, assuming that ΔH° and ΔS° are temperature independent.

c) Does raising the temperature favor this reaction, as written?

- d) Which factor, entropy or enthalpy, favors this reaction at high and low T?
- e) Calculate ΔG° at 305 K. Which reaction, forward or reverse, is spontaneous at this temperature?

When $\Delta G^{\circ} = 0$, the system is at **equilibrium** and **both** the forward and reverse reaction are proceeding, at the same rate. This is the case during **phase** transitions. Since $\Delta G^{\circ} = 0$, $\Delta H^{\circ} = T\Delta S^{\circ}$. This can be re-arranged:

$\mathbf{T} = \Delta \mathbf{H}^{\mathbf{o}} / \Delta \mathbf{S}^{\mathbf{o}}$	which allows the determination of melting or boiling points		
$\Delta S^{\circ} = \Delta H^{\circ} / T$	which demonstrates that all of the heat added at the transition temperature goes to raise the entropy of the system		
4. Calculate	the boiling point for BCI ₃ :		

$$BCI_3$$
 (I) \leftrightarrows BCI_3 (g)

given the following information:		$\underline{\Delta H^{o}_{f}}$ (kJ/mol)	<u>S°</u> (J/mol K)	
	BCl ₃ (I)	-418	209	
	BCl ₃ (g)	-395	290	

5. The heats of combustion of carbon, in the forms of graphite and diamond are shown below.

$C (gr) + O_2 (g) \rightarrow CO_2 (g)$	$\Delta H^{o} = -393.5 \text{ kJ/mol}$
$C(d) + O_2(g) \rightarrow CO_2(g)$	$\Delta H^{o} = -394.4 \text{ kJ/mol}$

a) What is the heat of reaction in going from graphite to diamond (hint: use Hess' Law)

 $C (gr) \rightarrow C (d)$

- b) The absolute entropy of graphite is 5.69 J/mol K and for diamond, 2.44 J/mol K, both at 298 K. Calculate ΔS° for this reaction.
- c) Calculate ΔG° for this reaction. Are diamonds thermodynamically stable at 298 K?

The value of ΔG° is related to the **equilibrium constant**, **K**, by the expression: $\Delta G^{\circ} = - RT \ln K$

6. What is ΔG° for the following reaction at 298 K?

2 NH₃ (g)
$$\leftrightarrows$$
 N₂ (g) + 3 H₂ (g) Δ H^o = 92.4 kJ
 Δ S^o = 198 J/K

- a) Under standard conditions (1 atm of NH_3 , N_2 and H_2) and at 298 K, what will be formed?
- b) Calculate the equilibrium constant for this reaction at 298 K.

c) Calculate the equilibrium **temperature** for this standard reaction. Will product or reactant be formed above this temperature?

7. For the reaction

 $CO(g) + 2 H_2O(g) \rightarrow CO_2(g) + H_2(g)$

at 770 K, K_{eq} = 5.10. Calculate the ΔG^o for the reaction at 770 K.

Reactions are most commonly carried out under **non-standard** conditions. The non-standard free energy, ΔG is calculated using the equation:

 $\Delta \mathbf{G} = -\mathbf{RT} \ln (\mathbf{K}/\mathbf{Q}) \text{ or } \Delta \mathbf{G} = \Delta \mathbf{G}^{\circ} + \mathbf{RT} \ln \mathbf{Q}$

K is the **equilibrium constant** = $\frac{[products]^{p}_{equilibrium}}{[reactants]^{r}_{equilibrium}}$

Q is the **reaction quotient** = $\frac{[products]^{p}_{initial}}{[reactants]^{r}_{initial}}$

where p and r are the stoichiometric coefficients of the products and reactants. **K** is calculated using the **equilibrium** concentrations and **Q** is calculated using the **initial** concentrations.

8. Calculate ΔG for the following sets of **initial** concentrations (M) to see how this influences the sign and magnitude of ΔG . Use the equation for the decomposition of ammonia shown in question 6.

	[N ₂]	[H ₂]	[NH ₃]	Q	∆G
a)	1.0	1.0	1.0		
b)	0	0	1.0		
c)	0.01	0.01	0.1		
d)	1.0	1.0	845		
e)	1.4	0.01	1.0		

Use the data given below to answer the next three questions.

 $\begin{array}{ll} 2 \ N_2 O \ (g) + 3 \ O_2 \ (g) \rightarrow 4 \ NO_2 \ (g) & \Delta H^\circ = -31.6 \ kJ \\ \Delta S^\circ = -98.0 \ J/K \end{array}$

- 9. Calculate the equilibrium constant at 298 K for this reaction.
 - a) First calculate ΔG° at 298.
 - b) Solve for K, given that $\Delta G^{\circ} = -RT \ln K$
- 10. When 1.00 M NO₂ (g), 0.50 M O₂ (g) and 0.50 M N₂O are mixed in a container, which of the following species will **increase** in concentration at 298 K, *N*₂O, *O*₂, *NO*₂, *none of them will change*
 - a) First solve for Q, with the given initial conditions.

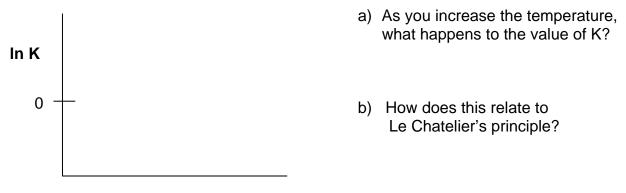
Q = _____

- b) Next solve for ΔG , the **non-standard** free energy
- c) Given the sign of ΔG , which will proceed spontaneously?

forward or reverse reaction

- d) Which species will be formed under these non-standard conditions?
- 11. Which of the following changes will make the reaction **less** spontaneous?
 - i) increasing $[N_2O]_i$ by a factor of 2
 - ii) increasing $[NO_2]_i$ by a factor of 2 and the $[N_2O]_i$ by 4
 - iii) increasing the temperature
 - iv) decreasing the temperature

The two expressions for ΔG° can be combined to give the van't Hoff equation, which explains the temperature dependence of K, the equilibrium constant. $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ and $\Delta G^{\circ} = -RT \ln K$. Rearranged, this gives:


$$\ln K = \frac{\Delta H^{\circ}}{R} \left(\frac{1}{T}\right) + \frac{\Delta S^{\circ}}{R}$$
$$y = m + b$$

a linear equation that plots In K vs 1/T.

The slope of the line is related to the standard enthalpy of the reaction and the intercept is related to the standard entropy change.

12. For the previous reaction: $2 \text{ NO}_2(g) + 3 \text{ O}_2(g) \rightarrow 4 \text{ NO}_2(g)$ $\Delta \text{H}^\circ = -31.6 \text{ kJ}$ $\Delta \text{S}^\circ = -98.0 \text{ J/mol}$

draw the approximate shape of the van't Hoff curve.

