
Entering the world of Javatar

1. Write it.
o  code or source code: The set of instructions in a program.

2. Compile it.
o  compile: Translate a program from one language to another.
o  byte code: The Java compiler converts your code into a format named

byte code that runs on many computer types.
3. Run (execute) it.

o  output: The messages printed to the user by a program.

source code
compile

byte code
run

output

Compiling/running programs

Syntax
•  Set of legal structures and commands that can be

used in a language
o  Semicolons ;
o  curly braces { }
o  Identifiers: names of the commands and such…

•  Compiler checks syntax, gives errors

Hello.java:3: ';' expected  
 System.out.println("Hello, world!!")  
 ^  
1 error"

4

Names and identifiers

• You must give your program a name.

public class GangstaRap {

–  Naming convention: capitalize each word (e.g. MyClassName)

–  Your program's file must match exactly (GangstaRap.java)
•  includes capitalization (Java is "case-sensitive")

•  identifier: A name given to an item in your program.
–  must start with a letter or _ or $
–  subsequent characters can be any of those or a number

•  legal: _myName TheCure ANSWER_IS_42 $bling$
•  illegal: me+u 49ers side-swipe Ph.D's

5

Keywords

• keyword: An identifier that you cannot use because it already
has a reserved meaning in Java.

 abstract default if private this
 boolean do implements protected throw
 break double import public throws
 byte else instanceof return transient
 case extends int short try
 catch final interface static void
 char finally long strictfp volatile
 class float native super while
 const for new switch
 continue goto package synchronized

System.out.println
•  A statement that prints a line of output on the console.

o  pronounced "print-linn"
o  sometimes called a "println statement" for short
o  A newline is included at the end of each println

•  Two ways to use System.out.println :
o  System.out.println("text");
   Prints the given message as output.

o  System.out.println();
   Prints a blank line of output.

Strings
•  Sequence of characters

•  Enclosed in double quotes “This is enclosed in

double quotes”

•  Some special characters must be escaped using

the backslash: ‘\’
o  For example: \" \t \n \\ "

o  Double quote: \""
o  Tab: \t"
o  Newline: \n"

Reality check
•  What is the output of the following println statements?

 System.out.println("\ta\tb\tc");
 System.out.println("\\\\");
 System.out.println("'");
 System.out.println("\"\"\"");
 System.out.println("C:\nin\the downward spiral");

•  Write a println statement to produce this output:

 / \ // \\ /// \\\"

“Always code as if the guy who
ends up maintaining your code will
be a violent psychopath who
knows where you live.”
Martin Golding

10

Comments

•  comment: A note written in source code by the programmer
to describe or clarify the code.
–  Comments are not executed when your program runs.

• Syntax:
 // comment text, on one line

 or,
/* comment text; may span multiple lines */

• Examples:
// This is a one-line comment.

/* This is a very long
 multi-line comment. */

Comments

•  Use them to explain the tricky bits of your code
•  Lets others know what’s on your mind
•  Use appropriately: if something is not obvious from

the syntax, it’s best to add a comment
•  Can use both flavors: /* … */ and //"

/* This is my super awesome program
that uses the println statement to go
ahead and display a friendly message
to the user because it's a convention
that was started long ago.*/

Bad:
// Prints a greeting
Good:

Static Methods &
Decomposition

Subset of the Supplement Lesson slides from: Building Java Programs, Chapter 1
by Stuart Reges and Marty Stepp (http://www.buildingjavaprograms.com/)

13

Algorithms

• algorithm: A list of steps for solving a problem.

• Example algorithm: "Bake sugar cookies"
–  Mix the dry ingredients.
–  Cream the butter and sugar.
–  Beat in the eggs.
–  Stir in the dry ingredients.
–  Set the oven temperature.
–  Set the timer.
–  Place the cookies into the oven.
–  Allow the cookies to bake.
–  Spread frosting and sprinkles onto the cookies.
–  ...

14

Problems with algorithms

•  lack of structure: Many tiny steps; tough to remember.

•  redundancy: Consider making a double batch...
–  Mix the dry ingredients.
–  Cream the butter and sugar.
–  Beat in the eggs.
–  Stir in the dry ingredients.
–  Set the oven temperature.
–  Set the timer.
–  Place the first batch of cookies into the oven.
–  Allow the cookies to bake.
–  Set the oven temperature
–  Set the timer.
–  Place the second batch of cookies into the oven.
–  Allow the cookies to bake.
–  Mix ingredients for frosting.
–  ...

15

Structured algorithms
•  structured algorithm: Split into coherent tasks.

1 Make the cookie batter.
–  Mix the dry ingredients.
–  Cream the butter and sugar.
–  Beat in the eggs.
–  Stir in the dry ingredients.

2 Bake the cookies.
–  Set the oven temperature.
–  Set the timer.
–  Place the cookies into the oven.
–  Allow the cookies to bake.

3 Add frosting and sprinkles.
–  Mix the ingredients for the frosting.
–  Spread frosting and sprinkles onto the cookies.

...

16

Removing redundancy

• A well-structured algorithm can describe repeated tasks with
less redundancy.

1 Make the cookie batter.
–  Mix the dry ingredients.
–  ...

2a Bake the cookies (first batch).
–  Set the oven temperature.
–  Set the timer.
–  ...

2b Bake the cookies (second batch).

3 Decorate the cookies.
–  ...

17

A program with redundancy
public class BakeCookies {
 public static void main(String[] args) {
 System.out.println("Mix the dry ingredients.");
 System.out.println("Cream the butter and sugar.");
 System.out.println("Beat in the eggs.");
 System.out.println("Stir in the dry ingredients.");
 System.out.println("Set the oven temperature.");
 System.out.println("Set the timer.");
 System.out.println("Place a batch of cookies into the oven.");
 System.out.println("Allow the cookies to bake.");
 System.out.println("Set the oven temperature.");
 System.out.println("Set the timer.");
 System.out.println("Place a batch of cookies into the oven.");
 System.out.println("Allow the cookies to bake.");
 System.out.println("Mix ingredients for frosting.");
 System.out.println("Spread frosting and sprinkles.");
 }
}

18

Static methods

•  static method: A named group of statements.
• denotes the structure of a program

• eliminates redundancy by code reuse

–  procedural decomposition:
dividing a problem into methods

• Writing a static method is like
adding a new command to Java.

class
method A

n  statement
n  statement
n  statement

method B
n  statement
n  statement

method C
n  statement
n  statement
n  statement

19

Using static methods

1. Design the algorithm.
–  Look at the structure, and which commands are repeated.

– Decide what are the important overall tasks.

2. Declare (write down) the methods.
–  Arrange statements into groups and give each group a name.

3. Call (run) the methods.
–  The program's main method executes the other methods to

perform the overall task.

20

Design of an algorithm
// This program displays a delicious recipe for baking cookies.
public class BakeCookies2 {
 public static void main(String[] args) {
 // Step 1: Make the cake batter.
 System.out.println("Mix the dry ingredients.");
 System.out.println("Cream the butter and sugar.");
 System.out.println("Beat in the eggs.");
 System.out.println("Stir in the dry ingredients.");

 // Step 2a: Bake cookies (first batch).
 System.out.println("Set the oven temperature.");
 System.out.println("Set the timer.");
 System.out.println("Place a batch of cookies into the oven.");
 System.out.println("Allow the cookies to bake.");

 // Step 2b: Bake cookies (second batch).
 System.out.println("Set the oven temperature.");
 System.out.println("Set the timer.");
 System.out.println("Place a batch of cookies into the oven.");
 System.out.println("Allow the cookies to bake.");

 // Step 3: Decorate the cookies.
 System.out.println("Mix ingredients for frosting.");
 System.out.println("Spread frosting and sprinkles.");
 }
}

21

Gives your method a name so it can be executed

•  Syntax:

public static void name() {
 statement;
 statement;
 ...
 statement;
}

•  Example:

public static void printWarning() {
 System.out.println("This product causes cancer");
 System.out.println("in lab rats and humans.");
}

Declaring a method

22

Calling a method

Executes the method's code

• Syntax:

 name();

–  You can call the same method many times if you like.

• Example:

 printWarning();

–  Output:

 This product causes cancer
 in lab rats and humans.

23

Program with static method
public class StartToday20110912 {

 public static void main(String[] args) {

 first();
 cheer();
 first();
 cheer();
 second();
 }

 public static void cheer() {
 System.out.println("G!H!S!");
 }

 public static void first() {
 System.out.println("Y-E-L-L Bulldogs Yell!");
 }

 public static void second() {
 System.out.println("Everybody Screams");
 }
}

Output:

Y-E-L-L Bulldogs Yell!
G!H!S!
Y-E-L-L Bulldogs Yell!
G!H!S!
Everybody Screams!

24

Final cookie program
// This program displays a delicious recipe for baking cookies.
public class BakeCookies3 {
 public static void main(String[] args) {
 makeBatter();
 bake(); // 1st batch
 bake(); // 2nd batch
 decorate();
 }

 // Step 1: Make the cake batter.
 public static void makeBatter() {
 System.out.println("Mix the dry ingredients.");
 System.out.println("Cream the butter and sugar.");
 System.out.println("Beat in the eggs.");
 System.out.println("Stir in the dry ingredients.");
 }

 // Step 2: Bake a batch of cookies.
 public static void bake() {
 System.out.println("Set the oven temperature.");
 System.out.println("Set the timer.");
 System.out.println("Place a batch of cookies into the oven.");
 System.out.println("Allow the cookies to bake.");
 }

 // Step 3: Decorate the cookies.
 public static void decorate() {
 System.out.println("Mix ingredients for frosting.");
 System.out.println("Spread frosting and sprinkles.");
 }
}

25

Methods calling methods
public class MethodsExample {
 public static void main(String[] args) {
 message1();
 message2();
 System.out.println("Done with main.");
 }

 public static void message1() {
 System.out.println("This is message1.");
 }

 public static void message2() {
 System.out.println("This is message2.");
 message1();
 System.out.println("Done with message2.");
 }
}

•  Output:
This is message1.
This is message2.
This is message1.
Done with message2.
Done with main.

26

• When a method is called, the program's execution...
–  "jumps" into that method, executing its statements, then
–  "jumps" back to the point where the method was called.

public class MethodsExample {

 public static void main(String[] args) {

 message1();

 message2();

 System.out.println("Done with main.");

 }

 ...

}

public static void message1() {
 System.out.println("This is message1.");
}

public static void message2() {
 System.out.println("This is message2.");
 message1();

 System.out.println("Done with message2.");
}

public static void message1() {
 System.out.println("This is message1.");
}

Control flow

27

When to use methods

•  Place statements into a static method if:
–  The statements are related structurally, and/or

–  The statements are repeated.

• You should not create static methods for:
–  An individual println statement.

–  Only blank lines. (Put blank printlns in main.)

–  Unrelated or weakly related statements.
(Consider splitting them into two smaller methods.)

Drawing complex figures
with static methods

29

Static methods question
• Write a program to print these figures using methods.

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

30

Development strategy

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

First version (unstructured):

n  Create an empty program and main method.

n  Copy the expected output into it, surrounding
each line with System.out.println syntax.

n  Run it to verify the output.

31

Program version 1
public class Figures1 {
 public static void main(String[] args) {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println();
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println("+--------+");
 System.out.println();
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("| STOP |");
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println();
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("+--------+");
 }
}

32

Development strategy 2

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

Second version (structured, with redundancy):

n  Identify the structure of the output.

n  Divide the main method into static methods
based on this structure.

33

Output structure

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

The structure of the output:
n  initial "egg" figure
n  second "teacup" figure
n  third "stop sign" figure
n  fourth "hat" figure

This structure can be represented by methods:
n  egg

n  teaCup

n  stopSign

n  hat

34

Program version 2
public class Figures2 {
 public static void main(String[] args) {
 egg();
 teaCup();
 stopSign();
 hat();
 }

 public static void egg() {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println();
 }

 public static void teaCup() {
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println("+--------+");
 System.out.println();
 }
 ...

35

Program version 2, cont'd.
 ...

 public static void stopSign() {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("| STOP |");
 System.out.println("\\ /");
 System.out.println(" ______/");
 System.out.println();
 }

 public static void hat() {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 System.out.println("+--------+");
 }
}

36

Development strategy 3

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

Third version (structured, without redundancy):

n  Identify redundancy in the output, and create
methods to eliminate as much as possible.

n  Add comments to the program.

37

Output redundancy

The redundancy in the output:

n  egg top: reused on stop sign, hat
n  egg bottom: reused on teacup, stop sign
n  divider line: used on teacup, hat

This redundancy can be fixed by methods:
n  eggTop

n  eggBottom

n  line

 / \
/ \
\ /
 ______/

\ /
 ______/
+--------+

 / \
/ \
| STOP |
\ /
 ______/

 / \
/ \
+--------+

38

Program version 3
// Suzy Student, CSE 138, Spring 2094
// Prints several figures, with methods for structure and redundancy.
public class Figures3 {
 public static void main(String[] args) {
 egg();
 teaCup();
 stopSign();
 hat();
 }

 // Draws the top half of an an egg figure.
 public static void eggTop() {
 System.out.println(" ______");
 System.out.println(" / \\");
 System.out.println("/ \\");
 }

 // Draws the bottom half of an egg figure.
 public static void eggBottom() {
 System.out.println("\\ /");
 System.out.println(" ______/");
 }

 // Draws a complete egg figure.
 public static void egg() {
 eggTop();
 eggBottom();
 System.out.println();
 }

 ...

39

Program version 3, cont'd.
 ...

 // Draws a teacup figure.
 public static void teaCup() {
 eggBottom();
 line();
 System.out.println();
 }

 // Draws a stop sign figure.
 public static void stopSign() {
 eggTop();
 System.out.println("| STOP |");
 eggBottom();
 System.out.println();
 }

 // Draws a figure that looks sort of like a hat.
 public static void hat() {
 eggTop();
 line();
 }

 // Draws a line of dashes.
 public static void line() {
 System.out.println("+--------+");
 }
}

