
1

Sorting a List of your Objects:
Comparable Interface and

its compareTo method

Subset of the Supplement Lesson slides from: Building Java Programs, Chapter 10.2
by Stuart Reges and Marty Stepp (http://www.buildingjavaprograms.com/) & thanks to Ms Martin.

2

Sorting Lists
• Collections.sort(List<T> list)

–  A static method in the Collections class
–  Can sort any kind of list
–  MUST pass in a variable of type List (like an ArrayList or others)

• But how does it know how to order those elements?
• The List’s element type (an Object) must implement the

Comparable interface … with the compareTo method

public interface Comparable {

 public int compareTo(Object obj);
}

3

The compareTo method

 The standard way for a Java class to define a comparison function for its
objects is to define a compareTo method.
 this.compareTo(object parameter_name)

•  Compares this with the parameter
–  returns negative number if this is less than parameter
–  returns zero if they are equal
–  returns positive number if this is greater than parameter
Example: in the String class, there is a method:
 public int compareTo(String other)

•  A call of A.compareTo(B) will return:
a value < 0 if A comes "before" B in the ordering,
a value > 0 if A comes "after" B in the ordering,

or 0 if A and B are considered "equal" in the ordering.

4

Using compareTo
• compareTo can be used as a test in an if statement.

String a = "alice";
String b = "bob";
if (a.compareTo(b) < 0) { // true
 ...
}

Primitives Objects
if (a < b) { ... if (a.compareTo(b) < 0) { ...

if (a <= b) { ... if (a.compareTo(b) <= 0) { ...

if (a == b) { ... if (a.compareTo(b) == 0) { ...

if (a != b) { ... if (a.compareTo(b) != 0) { ...

if (a >= b) { ... if (a.compareTo(b) >= 0) { ...

if (a > b) { ... if (a.compareTo(b) > 0) { ...

5

Comparable (10.2)
 public interface Comparable<E> {
 public int compareTo(E other);
 }

• A class can implement the Comparable interface to define a
natural ordering function for its objects.

• A call to your compareTo method should return:
a value < 0 if the other object comes "before" this one,
a value > 0 if the other object comes "after" this one,
or 0 if the other object is considered "equal" to this.

•  If you want multiple orderings, use a Comparator instead (see Ch. 13.1)

6

Comparable template
 public class name implements Comparable<name> {

 ...

 public int compareTo(name other) {
 ...
 }
 }

7

Comparable example
public class Point implements Comparable<Point> {
 private int x;
 private int y;
 ...

 // sort by x and break ties by y
 public int compareTo(Point other) {
 if (x < other.x) {
 return -1;
 } else if (x > other.x) {
 return 1;
 } else if (y < other.y) {
 return -1; // same x, smaller y
 } else if (y > other.y) {
 return 1; // same x, larger y
 } else {
 return 0; // same x and same y
 }
 }
}

8

compareTo tricks
•  subtraction trick - Subtracting related numeric values produces

the right result for what you want compareTo to return:
// sort by x and break ties by y
public int compareTo(Point other) {
 if (x != other.x) {
 return x - other.x; // different x
 } else {
 return y - other.y; // same x; compare y
 }
}

–  The idea:
•  if x > other.x, then x - other.x > 0
•  if x < other.x, then x - other.x < 0
•  if x == other.x, then x - other.x == 0

– NOTE: This trick doesn't work for doubles (but see Math.signum)

9

compareTo tricks 2
•  delegation trick - If your object's fields are comparable (such

as strings), use their compareTo results to help you:

// sort by employee name, e.g. "Jim" < "Susan"
public int compareTo(Employee other) {
 return name.compareTo(other.getName());
}

• toString trick - If your object's toString representation is
related to the ordering, use that to help you:

// sort by date, e.g. "09/19" > "04/01"
public int compareTo(Date other) {
 return toString().compareTo(other.toString());
}

