
toString
Encapsulation &
“this” keyword

Subset of the Supplement Lesson slides from: Building Java Programs, Chapter 8.2 & 8.4
by Stuart Reges and Marty Stepp (http://www.buildingjavaprograms.com/) & thanks to Ms Martin.

2

Printing objects
• By default, Java doesn't know how to print objects:

Point p = new Point();
p.x = 10;
p.y = 7;
System.out.println("p is " + p); // p is Point@9e8c34

// better, but cumbersome; p is (10, 7)
System.out.println("p is (" + p.x + ", " + p.y + ")");

// desired behavior
System.out.println("p is " + p); // p is (10, 7)

3

The toString method
tells Java how to convert an object into a String

 Point p1 = new Point(7, 2);
 System.out.println("p1: " + p1);

 // the above code is really calling the following:
 System.out.println("p1: " + p1.toString());

• Every class has a toString, even if it isn't in your code.
–  Default: class's name @ object's memory address (base 16)

 Point@9e8c34

4

toString syntax

–  Method name, return, and parameters must match exactly [these
won’t work: tostring() or ToString()].

–  Example:

 // Returns a String representing this Point.
 public String toString() {
 return "(" + x + ", " + y + ")";
 }

5

Encapsulation
• encapsulation: Hiding implementation details from clients.

–  Encapsulation forces abstraction.
• separates external view (behavior) from internal view (state)

• protects the integrity of an object's data

6

Private fields
A field that cannot be accessed from outside the class

 private type name;

–  Examples:

 private int id;
 private String name;

• Client code won't compile if it accesses private fields:

PointMain.java:11: x has private access in Point
System.out.println(p1.x);
 ^

7

Accessing private state
 // A "read-only" access to the x field ("accessor")
 public int getX() {
 return x;
 }

 // Allows clients to change the x field ("mutator")
 public void setX(int newX) {
 x = newX;
 }

–  Client code will look more like this:

 System.out.println(p1.getX());
 p1.setX(14);

8

Point class, version 4
// A Point object represents an (x, y) location.
public class Point {
 private int x;
 private int y;

 public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }

 public int getX() {
 return x;
 }

 public int getY() {
 return y;
 }

 public double distanceFromOrigin() {
 return Math.sqrt(x * x + y * y);
 }

 public void setLocation(int newX, int newY) {
 x = newX;
 y = newY;
 }

 public void translate(int dx, int dy) {
 setLocation(x + dx, y + dy);
 }
}

9

Benefits of encapsulation
• Abstraction between object and clients

•  Protects object from unwanted access
–  Example: Can't fraudulently increase an Account's balance.

• Can change the class implementation later
–  Example: Point could be rewritten in polar

coordinates (r, θ) with the same methods.

• Can constrain objects' state (invariants)
–  Example: Only allow Accounts with non-negative balance.

–  Example: Only allow Dates with a month from 1-12.

10

The this keyword
• this : Refers to the implicit parameter inside your class.

 (a variable that stores the object on which a method is called)

–  Refer to a field: this.field

–  Call a method: this.method(parameters);

– One constructor this(parameters);
can call another:

11

Variable shadowing
•  shadowing: 2 variables with same name in same scope.

–  Normally illegal, except when one variable is a field.

 public class Point {
 private int x;
 private int y;

 ...

 // this is legal
 public void setLocation(int x, int y) {
 ...
 }

–  In most of the class, x and y refer to the fields.
–  In setLocation, x and y refer to the method's parameters.

12

Fixing shadowing
 public class Point {
 private int x;
 private int y;

 ...

 public void setLocation(int x, int y) {
 this.x = x;
 this.y = y;
 }
 }

•  Inside setLocation,
– To refer to the data field x, say this.x
– To refer to the parameter x, say x

13

Calling another constructor
Here’s a clever use of this in constructors:
 public class Point {
 private int x;
 private int y;

 public Point() {
 this(0, 0); // calls (x, y) constructor
 }

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 ...
 }

• Avoids redundancy between constructors
• Only a constructor (not a method) can call another constructor

