
AP CS:
Quick Review of

Classes & Objects
Vocabulary & Concepts

Subset of the Supplement Lesson slides from: Building Java Programs, Chapter 8.1 – 8.4
by Stuart Reges and Marty Stepp (http://www.buildingjavaprograms.com/) & thanks to Ms Martin.

2

Classes and objects
•  class: A program entity that represents either:

 1. A program / module, or
 2. A template for a new type of objects.

– The DrawingPanel class is a template for creating
DrawingPanel objects.

• object: An entity that combines state and behavior.
– object-oriented programming (OOP): Programs that perform

their behavior as interactions between objects.

3

Clients of objects
•  client program: A program that uses objects.

–  Example: Bomb is a client of DrawingPanel and Graphics.

Bomb.java (client program)
public class Bomb {
 main(String[] args) {
 new DrawingPanel(...)
 new DrawingPanel(...)
 ...
 }
}

DrawingPanel.java (class)
public class DrawingPanel {
 ...
}

4

Fields
•  field: A variable inside an object that is part of its state.

–  Each object has its own copy of each field.

• Declaration syntax:

 type name;

–  Example:

 public class Student {
 String name; // each Student object has a
 double gpa; // name and gpa field
 }

5

Accessing fields
•  Other classes can access/modify an object's fields.

–  access: variable.field

– modify: variable.field = value;

•  Example:
Point p1 = new Point();
Point p2 = new Point();
System.out.println("the x-coord is " + p1.x); // access
p2.y = 13; // modify

6

A class and its client
• Point.java is not, by itself, a runnable program.

–  A class can be used by client programs.

PointMain.java (client program)
public class PointMain {
 main(String args) {
 Point p1 = new Point();
 p1.x = 7;
 p1.y = 2;

 Point p2 = new Point();
 p2.x = 4;
 p2.y = 3;
 ...
 }
}

Point.java (class of objects)
public class Point {
 int x;
 int y;
}

x 7 y 2

x 4 y 3

7

Instance methods
•  instance method (or object method): Exists inside each

object of a class and gives behavior to each object.

 public type name(parameters) {
 statements;
 }

–  same syntax as static methods, but without static keyword
 Example:

// Changes the location of this Point object.
 public void draw(Graphics g) {
 g.fillOval(x, y, 3, 3);
 g.drawString("(" + x + ", " + y + ")", x, y);
 }
}

8

The implicit parameter
•  implicit parameter:

The object on which an instance method is called.

–  During the call p1.draw(g);
the object referred to by p1 is the implicit parameter.

–  The instance method can refer to that object's fields.
• We say that it executes in the context of a particular object.

•  draw can refer to the x and y of the object it was called on.

9

Kinds of Object methods
• mutator: A method that modifies an object's state.

–  Examples: setLocation, translate

• accessor: A method that lets clients examine object state.
–  Examples: distance, distanceFromOrigin
–  often has a non-void return type

10

Examples
Write a mutator method setLocation that changes both

coordinates of a Point's location to the given newx, newy
values

public void setLocation(int newX, int newY) {
 x = newX;
 y = newY;
}

Write a accessor method distanceFromOrigin that returns the
distance between a Point and the origin, (0, 0).

public double distanceFromOrigin() {
 return Math.sqrt(x * x + y * y);
}

11

Constructors

•  constructor: Initializes the state of new objects.

 public type(parameters) {
 statements;
 }

–  where the “type” is the Object’s name

–  runs when the client uses the new keyword

–  no return type is specified;
it implicitly "returns" the new object being created

–  If a class has no constructor, Java gives it a default
constructor with no parameters that sets all fields to 0.

12

Multiple constructors
• A class can have multiple constructors.

–  Each one must accept a unique set of parameters.

// Constructs a Point at the given x/y location.
public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
}

// Constructs a new point at (0, 0).
public Point() {
 x = 0;
 y = 0;
}

13

Array of Elements requires
Two-phase initialization

•  Array of Objects: you can create an array of any kind of objects,
but the elements of an array of objects are initialized to null.

•  null : A value that does not refer to any object (yet).

Two-Phase Initialization:
1) initialize the array itself (each element is initially null)
2) initialize each element of the array to be a new object
 String[] words = new String[4]; // phase 1
 for (int i = 0; i < words.length; i++) {
 coords[i] = "word" + i; // phase 2
 }

•  dereference: To access field data or methods of an object with the dot notation:
such as a field: p1.x or a method: s.length()
 – It is illegal to dereference null (causes an exception).
 – null is not any object, so it has no methods or data.

14

The toString method
tells Java how to convert an object into a String

–  Method name, return, and parameters must match exactly [these won’t
work: tostring() or ToString()].

–  Syntax Sample:

 // Returns a String representing this Point.
 public String toString() {
 return "(" + x + ", " + y + ")";
 }

- Every class has a toString, even if it isn't in your code.
Default: class's name @ object's memory address (base 16)

 Point@9e8c34

15

Encapsulation: Private fields
Encapsulation: Hiding implementation details from clients using

Private Fields...
Private Field: A field that cannot be accessed from outside the

class
 private type name;

 private int id;
 private String name;

• Client code won't compile if it accesses private fields but…
• An Object’s method can return those private field values:

 // A "read-only" access to the x field ("accessor")
 public int getX() {
 return x;
 }

16

Variable shadowing
•  shadowing: 2 variables with same name in same scope.

–  Normally illegal, except when one variable is a field.
 public class Point {
 private int x;
 private int y;

 ...

 // this is legal
 public void setLocation(int x, int y) {
 ...
 }

–  In most of the class, x and y refer to the fields.
–  In setLocation, x and y refer to the method's parameters.

17

The this keyword
• this : Refers to the implicit parameter inside your class.

 (a variable that stores the object on which a method is called)
–  Refer to a field: this.field
–  Call a method: this.method(parameters);
– One constructor this(parameters);

can call another:

“this” can fix (clarify) variable shadowing:
 public void setLocation(int x, int y) {
 this.x = x;
 this.y = y;
 }

