
Building Java Programs
Chapter 5

while Loops,
 Fencepost Loops, and Sentinel Loops

Subset of the Supplement Lesson slides from: Building Java Programs, Chapter 6
by Stuart Reges and Marty Stepp (http://www.buildingjavaprograms.com/)

2

Warm Up

• Write isPlural, a method that takes in a string and returns
whether or not it ends in “s” (returns what type?)

• Write countSlowly, a method that takes in an int and returns a
String. For example, countSlowly(2) should return
“1onethousand2onethousand”

• Write a method printNumbers that prints each number from
1 to a given maximum, separated by commas.
printNumbers(5); !
should print:
1, 2, 3, 4, 5!

3

A deceptive problem...
•  Write a method printNumbers that prints each number from

1 to a given maximum, separated by commas.

For example, the call:
printNumbers(5)

 should print:
1, 2, 3, 4, 5

4

Flawed solutions
•  public static void printNumbers(int max) {
 for (int i = 1; i <= max; i++) {
 System.out.print(i + ", ");
 }
 System.out.println(); // to end the line of output
 }

–  Output from printNumbers(5): 1, 2, 3, 4, 5,

•  public static void printNumbers(int max) {
 for (int i = 1; i <= max; i++) {
 System.out.print(", " + i);
 }
 System.out.println(); // to end the line of output
 }

–  Output from printNumbers(5): , 1, 2, 3, 4, 5

5

Fence post analogy
•  We print n numbers but need only n - 1 commas.
•  Similar to building a fence with wires separated by posts:

–  If we use a flawed algorithm that repeatedly places a post + wire,
the last post will have an extra dangling wire.

 for (length of fence) {
 place a post.
 place some wire.
 }

6

Fencepost loop
•  Add a statement outside the loop to place the initial "post."

–  Also called a fencepost loop or a "loop-and-a-half" solution.

 place a post.
 for (length of fence - 1) {
 place some wire.
 place a post.
 }

7

Fencepost method solution
public static void printNumbers(int max) {
 System.out.print(1);
 for (int i = 2; i <= max; i++) {
 System.out.print(", " + i);
 }
 System.out.println(); // to end the line
}

•  Alternate solution: Either first or last "post" can be taken out:

public static void printNumbers(int max) {
 for (int i = 1; i <= max - 1; i++) {
 System.out.print(i + ", ");
 }
 System.out.println(max); // to end the line
}

8

Fencepost question
•  Modify your method printNumbers into a new method
printPrimes that prints all prime numbers up to a max.

–  Example: printPrimes(50) prints
 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47

–  If the maximum is less than 2, print no output.

•  To help you, write a method countFactors which returns
the number of factors of a given integer.
–  countFactors(20) returns 6 due to factors 1, 2, 4, 5, 10, 20.

9

Fencepost answer
// Prints all prime numbers up to the given max.
public static void printPrimes(int max) {
 if (max >= 2) {
 System.out.print("2");
 for (int i = 3; i <= max; i++) {
 if (countFactors(i) == 2) {
 System.out.print(", " + i);
 }
 }
 System.out.println();
 }
}

// Returns how many factors the given number has.
public static int countFactors(int number) {
 int count = 0;
 for (int i = 1; i <= number; i++) {
 if (number % i == 0) {
 count++; // i is a factor of number
 }
 }
 return count;
}

10

while loops

11

Categories of loops
•  definite loop: Executes a known number of times.

–  The for loops we have seen are definite loops.

•  Print "hello" 10 times.
•  Find all the prime numbers up to an integer n.
•  Print each odd number between 5 and 127.

•  indefinite loop: One where the number of times its body
repeats is not known in advance.

•  Prompt the user until they type a non-negative number.
•  Print random numbers until a prime number is printed.
•  Repeat until the user has types "q" to quit.

12

The while loop
• while loop: Repeatedly executes its

body as long as a logical test is true.

 while (test) {
 statement(s);
 }

•  Example:

 int num = 1; // initialization
 while (num <= 200) { // test
 System.out.print(num + " ");
 num = num * 2; // update
 }

 // output: 1 2 4 8 16 32 64 128

13

Example while loop
// finds the first factor of 91, other than 1
int n = 91;
int factor = 2;
while (n % factor != 0) {
 factor++;
}
System.out.println("First factor is " + factor);

// output: First factor is 7

– while is better than for because we don't know how many

times we will need to increment to find the factor.

14

•  sentinel: A value that signals the end of user input.
–  sentinel loop: Repeats until a sentinel value is seen.

•  Example: Write a program that prompts the user for numbers
until the user types 0, then outputs their sum.
–  (In this case, 0 is the sentinel value.)

 Enter a number (0 to quit): 10
 Enter a number (0 to quit): 20
 Enter a number (0 to quit): 30
 Enter a number (0 to quit): 0
 The sum is 60

Sentinel values

15

Flawed sentinel solution

• What's wrong with this solution?

Scanner console = new Scanner(System.in);
int sum = 0;
int number = 1; // "dummy value", anything but 0

while (number != 0) {
 System.out.print("Enter a number (0 to quit): ");
 number = console.nextInt();
 sum = sum + number;
}

System.out.println("The total is " + sum);

16

Changing the sentinel value

• Modify your program to use a sentinel value of -1.
–  Example log of execution:

 Enter a number (-1 to quit): 15
 Enter a number (-1 to quit): 25
 Enter a number (-1 to quit): 10
 Enter a number (-1 to quit): 30
 Enter a number (-1 to quit): -1
 The total is 80

17

Changing the sentinel value

• To see the problem, change the sentinel's value to -1:

Scanner console = new Scanner(System.in);
int sum = 0;
int number = 1; // "dummy value", anything but -1

while (number != -1) {
 System.out.print("Enter a number (-1 to quit): ");
 number = console.nextInt();
 sum = sum + number;
}

System.out.println("The total is " + sum);

• Now the solution produces the wrong output. Why?
The total was 79

18

The problem with our code

• Our code uses a pattern like this:
sum = 0.
while (input is not the sentinel) {
 prompt for input; read input.
 add input to the sum.
}

• On the last pass, the sentinel -1 is added to the sum:
 prompt for input; read input (-1).
 add input (-1) to the sum.

• This is a fencepost problem.
–  Must read N numbers, but only sum the first N-1 of them.

19

A fencepost solution
sum = 0.
prompt for input; read input. // place a "post"

while (input is not the sentinel) {
 add input to the sum. // place a "wire"
 prompt for input; read input. // place a "post"
}

• Sentinel loops often utilize a fencepost "loop-and-a-half" style
solution by pulling some code out of the loop.

20

Correct sentinel code
Scanner console = new Scanner(System.in);
int sum = 0;

// pull one prompt/read ("post") out of the loop
System.out.print("Enter a number (-1 to quit): ");
int number = console.nextInt();

while (number != -1) {
 sum = sum + number; // moved to top of loop
 System.out.print("Enter a number (-1 to quit): ");
 number = console.nextInt();
}

System.out.println("The total is " + sum);

21

Sentinel as a constant
public static final int SENTINEL = -1;
...

Scanner console = new Scanner(System.in);
int sum = 0;

// pull one prompt/read ("post") out of the loop
System.out.print("Enter a number (" + SENTINEL +
 " to quit): ");
int number = console.nextInt();

while (number != SENTINEL) {
 sum = sum + number; // moved to top of loop
 System.out.print("Enter a number (" + SENTINEL +
 " to quit): ");
 number = console.nextInt();
}

System.out.println("The total is " + sum);

Random numbers

23

Math.random

Math.random() generates pseudo-random numbers…
A double between 0 (inclusive) and 1 (exclusive)

• Can be used in an if statement:
 double num = Math.random();!
 if(num < .5) {!
 return "heads";!
 } else {!
 return "tails";!

 }  
• Can be multiplied and cast:
 // random integer [0, 4]!
int rand = (int) (Math.random() * 5);!

24

Using Math.random()

• Would Math.random() ever return 1.0?
• So how would you use Math.random() to generate a number

from 1 to 10? (there is more than one way to do this)

Let’s try this in Java code…
What methods and operations shall we use?

 (int) (Math.random()*10 + 1)!
 (int) Math.ceil(Math.random()*10)!

25

The Random class
Please, DO NOT USE THIS FOR PROJECT 5: Guessing Game.
•  A Random object generates pseudo-random numbers.

–  Class Random is found in the java.util package.
 import java.util.*;

–  Example:

 Random rand = new Random();
 int randomNumber = rand.nextInt(10); // 0-9

Method name Description

nextInt() returns a random integer

nextInt(max) returns a random integer in the range [0, max)
in other words, 0 to max-1 inclusive

nextDouble() returns a random real number in the range [0.0, 1.0)

26

Generating random numbers
•  Common usage: to get a random number from 1 to N

 int n = rand.nextInt(20) + 1; // 1-20
inclusive

•  To get a number in arbitrary range [min, max] inclusive:

 name.nextInt(size of range) + min

•  where (size of range) is (max - min + 1)

–  Example: A random integer between 4 and 10 inclusive:

 int n = rand.nextInt(7) + 4;

