
AP Computer Science

Line based File Input

Subset of the Supplement Lesson slides from: Building Java Programs, Chapter 6
by Stuart Reges and Marty Stepp (http://www.buildingjavaprograms.com/)

2

Hours question
• Given a file hours.txt with the following contents:

 123 Kim 12.5 8.1 7.6 3.2
 456 Eric 4.0 11.6 6.5 2.7 12
 789 Stef 8.0 8.0 8.0 8.0 7.5

–  Consider the task of computing hours worked by each person:

 Kim (ID#123) worked 31.4 hours (7.85 hours/day)

 Eric (ID#456) worked 36.8 hours (7.36 hours/day)

 Stef (ID#789) worked 39.5 hours (7.9 hours/day)

•  Let's try to solve this problem token-by-token ...

3

Hours answer (flawed)
// This solution does not work!
import java.io.*; // for File
import java.util.*; // for Scanner

public class HoursWorked {
 public static void main(String[] args)
 throws FileNotFoundException {
 Scanner input = new Scanner(new File("hours.txt"));
 while (input.hasNext()) {
 // process one person
 int id = input.nextInt();
 String name = input.next();
 double totalHours = 0.0;
 int days = 0;
 while (input.hasNextDouble()) {
 totalHours += input.nextDouble();
 days++;
 }
 System.out.println(name + " (ID#" + id +
 ") worked " + totalHours + " hours (" +
 (totalHours / days) + " hours/day)");
 }
 }
}

4

Flawed output
Susan (ID#123) worked 487.4 hours (97.48 hours/day)
Exception in thread "main"
java.util.InputMismatchException
 at java.util.Scanner.throwFor(Scanner.java:840)
 at java.util.Scanner.next(Scanner.java:1461)
 at java.util.Scanner.nextInt(Scanner.java:2091)
 at HoursWorked.main(HoursBad.java:9)

–  The inner while loop is grabbing the next person's ID.
–  We want to process the tokens, but we also care about the line

breaks (they mark the end of a person's data).

• A better solution is a hybrid approach:
–  First, break the overall input into lines.

–  Then break each line into tokens.

5

Line-based Scanners

Scanner input = new Scanner(new File("file name"));
while (input.hasNextLine()) {
 String line = input.nextLine();
 process this line;
}

Method Description

nextLine() returns next entire line of input (from cursor to \n)

hasNextLine() returns true if there are any more lines of input to read
(always true for console input)

6

Consuming lines of input
 23 3.14 John Smith "Hello" world
 45.2 19

• The Scanner reads the lines as follows:

 23\t3.14 John Smith\t"Hello" world\n\t\t45.2 19\n
 ^

–  String line = input.nextLine();
 23\t3.14 John Smith\t"Hello" world\n\t\t45.2 19\n
 ^

–  String line2 = input.nextLine();
 23\t3.14 John Smith\t"Hello" world\n\t\t45.2 19\n
 ^

–  Each \n character is consumed but not returned.

7

Scanners on Strings

• A Scanner can tokenize the contents of a String:

 Scanner name = new Scanner(String);

–  Example:

 String text = "15 3.2 hello 9 27.5";
 Scanner scan = new Scanner(text);

 int num = scan.nextInt();
 System.out.println(num); // 15

 double num2 = scan.nextDouble();
 System.out.println(num2); // 3.2

 String word = scan.next();
 System.out.println(word); // hello

8

Mixing lines and tokens

 // Counts the words on each line of a file
 Scanner input = new Scanner(new File("input.txt"));
 while (input.hasNextLine()) {
 String line = input.nextLine();
 Scanner lineScan = new Scanner(line);

 // process the contents of this line
 int count = 0;
 while (lineScan.hasNext()) {
 String word = lineScan.next();
 count++;
 }
 System.out.println("Line has " + count + " words");
 }

Input file input.txt: Output to console:
The quick brown fox jumps over
the lazy dog.

Line has 6 words
Line has 3 words

9

Hours question
•  Fix the Hours program to read the input file properly:

 123 Kim 12.5 8.1 7.6 3.2
 456 Eric 4.0 11.6 6.5 2.7 12
 789 Stef 8.0 8.0 8.0 8.0 7.5

–  Recall, it should produce the following output:

 Kim (ID#123) worked 31.4 hours (7.85 hours/day)

 Eric (ID#456) worked 36.8 hours (7.36 hours/day)

 Stef (ID#789) worked 39.5 hours (7.9 hours/day)

10

Hours answer, corrected
// Processes an employee input file and outputs each employee's hours.
import java.io.*; // for File
import java.util.*; // for Scanner

public class Hours {
 public static void main(String[] args) throws FileNotFoundException {
 Scanner input = new Scanner(new File("hours.txt"));
 while (input.hasNextLine()) {
 String line = input.nextLine();
 Scanner lineScan = new Scanner(line);
 int id = lineScan.nextInt(); // e.g. 456
 String name = lineScan.next(); // e.g. "Eric"
 double sum = 0.0;
 int count = 0;
 while (lineScan.hasNextDouble()) {
 sum = sum + lineScan.nextDouble();
 count++;
 }

 double average = sum / count;
 System.out.println(name + " (ID#" + id + ") worked " +
 sum + " hours (" + average + " hours/day)");
 }
 }
}

