
Inheritance
& Super

Subset of the Supplement Lesson slides from: Building Java Programs, Chapter 9.1 & 9.2
by Stuart Reges and Marty Stepp (http://www.buildingjavaprograms.com/).

(interacting with the superclass)

2

Why add Hierarchy?

• Why would we want to create a Hierarchy for our
code?

• Why does Biology use a Hierarchy to study life?
–  Life: Cellular live (other: non-Cellular)
–  Domain: Eukaryotes (others: Archaea & Bacteria)
–  Kingdom: Animalia (others: Plantae, Fungi, Bacteria, …)
–  Phylum: Chordate – has a spine
–  Class: Mammalia – has hair, born live, …
–  Order: Carnivora – eats meat
–  Family: Canidae
–  Genus: Canis
–  Species: C. lupus
–  SubSpecies: C. l. familiaris – like Bulldogs

• Are there other places where these orders of
class and subclasses helps us organize things?

3

Interfaces (in context)

• Establish a ‘is-a’ relationship without code sharing
• One way of addressing the software crisis
• Allow dividing up a complex task

–  all developers code to a common interface
–  implementations can be changing as long as interface is

respected

•  Free developers from details (ArrayList vs LinkedList? Doesn’t
matter, they’re both Lists!)

• Reuse utilities like Collections.sort
–  Just need to implement the Comparable interface!

4

The software crisis
•  software engineering: The practice of developing,

designing, documenting, testing large computer programs.

•  Large-scale projects face many issues:
–  getting many programmers to work together
–  getting code finished on time
–  avoiding redundant code
–  finding and fixing bugs
– maintaining, improving, and reusing existing code

•  code reuse: The practice of writing program code once and
using it in many contexts.

5

Law firm HR Analogy

• Our Law firm has a variety of Employees:
–  Lawyers
–  Marketers
–  Secretaries

• Legal Secretaries

• They all have:
–  vacation & vacation forms
–  salary
–  and various behaviours: suing, advertise, take dictation, &

prepare legal documents.
–  training manuals

• So how can we create an HR system to reflect this?...

6

Law firm employee analogy

•  common rules: hours, vacation, benefits, regulations ...
–  all employees attend a common orientation to learn general

company rules
–  each employee receives a 20-page manual of common rules

•  each subdivision also has specific rules:
–  employee receives a smaller (1-3 page) manual of these rules
–  smaller manual adds some new rules and also changes some

rules from the large manual

7

Separating behavior
•  Why not just have a 22 page Lawyer manual, a 21-page

Secretary manual, a 23-page Marketer manual, etc.?

•  Some advantages of the separate manuals:
– maintenance: Only one update if a common rule changes.
–  locality: Quick discovery of all rules specific to lawyers.

•  Some key ideas from this example:
– General rules are useful (the 20-page manual).
–  Specific rules that may override general ones are also useful.

8

Is-a relationships, hierarchies
•  is-a relationship: A hierarchical connection where one

category can be treated as a specialized version of another.
–  every marketer is an employee
–  every legal secretary is a secretary

•  inheritance hierarchy: A set of classes connected by is-a
relationships that can share common code.

9

Employee regulations
•  Consider the following employee regulations:

–  Employees work 40 hours / week.

–  Employees make $40,000 per year, except legal secretaries who make $5,000
extra per year ($45,000 total), and marketers who make $10,000 extra per year
($50,000 total).

–  Employees have 2 weeks of paid vacation leave per year, except lawyers who
get an extra week (a total of 3).

–  Employees should use a yellow form to apply for leave, except for lawyers who
use a pink form.

•  Each type of employee has some unique behavior:
–  Lawyers know how to sue.

–  Marketers know how to advertise.

–  Secretaries know how to take dictation.

–  Legal secretaries know how to prepare legal documents.

10

An Employee class
// A class to represent employees in general (20-page manual).
public class Employee {
 public int getHours() {
 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return 40000.0; // $40,000.00 / year
 }

 public int getVacationDays() {
 return 10; // 2 weeks' paid vacation
 }

 public String getVacationForm() {
 return "yellow"; // use the yellow form
 }
}

–  Exercise: Implement class Secretary, based on the previous
employee regulations. (Secretaries can take dictation.)

11

Redundant Secretary class
// A redundant class to represent secretaries.
public class Secretary {
 public int getHours() {
 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return 40000.0; // $40,000.00 / year
 }

 public int getVacationDays() {
 return 10; // 2 weeks' paid vacation
 }

 public String getVacationForm() {
 return "yellow"; // use the yellow form
 }

 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

12

Desire for code-sharing
• takeDictation is the only unique behavior in Secretary.

•  We'd like to be able to say:

// A class to represent secretaries.
public class Secretary {
 copy all the contents from the Employee class;

 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

13

Inheritance
•  inheritance: A way to form new classes based on existing

classes, taking on their attributes/behavior.
–  a way to group related classes
–  a way to share code between two or more classes

•  One class can extend another, absorbing its data/behavior.
–  superclass: The parent class that is being extended.
–  subclass: The child class that extends the superclass and inherits

its behavior.
•  Subclass gets a copy of every field and method from superclass

14

Inheritance syntax
 public class name extends superclass {

–  Example:

 public class Secretary extends Employee {
 ...

 }

•  By extending Employee, each Secretary object now:
–  receives a getHours, getSalary, getVacationDays, and
getVacationForm method automatically

–  can be treated as an Employee by client code (seen later)

15

Improved Secretary code
// A class to represent secretaries.
public class Secretary extends Employee {
 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

•  Now we only write the parts unique to each type.
– Secretary inherits getHours, getSalary,
getVacationDays, and getVacationForm methods from
Employee.

– Secretary adds the takeDictation method.

16

Implementing Lawyer
•  Consider the following lawyer regulations:

–  Lawyers who get an extra week of paid vacation (a total of 3).
–  Lawyers use a pink form when applying for vacation leave.
–  Lawyers have some unique behavior: they know how to sue.

•  Problem: We want lawyers to inherit most behavior from
employee, but we want to replace parts with new behavior.

17

Overriding methods
•  override: To write a new version of a method in a subclass

that replaces the superclass's version.
– No special syntax required to override a superclass method.

Just write a new version of it in the subclass.

 public class Lawyer extends Employee {
 // overrides getVacationForm method in Employee class
 public String getVacationForm() {
 return "pink";
 }
 ...
 }

–  Exercise: Complete the Lawyer class.
•  (3 weeks vacation, pink vacation form, can sue)

18

Lawyer class
// A class to represent lawyers.
public class Lawyer extends Employee {
 // overrides getVacationForm from Employee class
 public String getVacationForm() {
 return "pink";
 }

 // overrides getVacationDays from Employee class
 public int getVacationDays() {
 return 15; // 3 weeks vacation
 }

 public void sue() {
 System.out.println("I'll see you in court!");
 }
}

–  Exercise: Complete the Marketer class. Marketers make
$10,000 extra ($50,000 total) and know how to advertise.

19

Marketer class
// A class to represent marketers.
public class Marketer extends Employee {
 public void advertise() {
 System.out.println("Act now while supplies last!");
 }

 public double getSalary() {
 return 50000.0; // $50,000.00 / year
 }
}

20

Levels of inheritance
•  Multiple levels of inheritance in a hierarchy are allowed.

–  Example: A legal secretary is the same as a regular secretary but
makes more money ($45,000) and can file legal briefs.

 public class LegalSecretary extends Secretary {
 ...
 }

–  Exercise: Complete the LegalSecretary class.

21

LegalSecretary class
// A class to represent legal secretaries.
public class LegalSecretary extends Secretary {
 public void fileLegalBriefs() {
 System.out.println("I could file all day!");
 }

 public double getSalary() {
 return 45000.0; // $45,000.00 / year
 }
}

Interacting with the
superclass

Subset of the Supplement Lesson slides from: Building Java Programs, Chapter 9.2
by Stuart Reges and Marty Stepp (http://www.buildingjavaprograms.com/).

23

Changes to common behavior
•  Let's return to our previous company/employee example.

•  Imagine a company-wide change affecting all employees.

Example: Everyone is given a $10,000 raise due to inflation.
–  The base employee salary is now $50,000.
–  Legal secretaries now make $55,000.
– Marketers now make $60,000.

•  We must modify our code to reflect this policy change.

24

Modifying the superclass

// A class to represent employees (20-page manual).
public class Employee {
 public int getHours() {
 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return 50000.0; // $50,000.00 / year
 }

 ...
}

–  Are we finished?

•  The Employee subclasses are still incorrect.
–  They have overridden getSalary to return other values.

25

An unsatisfactory solution
public class LegalSecretary extends Secretary {
 public double getSalary() {
 return 55000.0;
 }
 ...
}

public class Marketer extends Employee {
 public double getSalary() {
 return 60000.0;
 }
 ...
}

–  Problem: The subclasses' salaries are based on the Employee
salary, but the getSalary code does not reflect this.

26

Calling overridden methods
•  Subclasses can call overridden methods with super

 super.method(parameters)

–  Example:

 public class LegalSecretary extends Secretary {
 public double getSalary() {
 double baseSalary = super.getSalary();
 return baseSalary + 5000.0;
 }
 ...
 }

–  Exercise: Modify Lawyer and Marketer to use super.

27

Improved subclasses
public class Lawyer extends Employee {
 public String getVacationForm() {
 return "pink";
 }

 public int getVacationDays() {
 return super.getVacationDays() + 5;
 }

 public void sue() {
 System.out.println("I'll see you in court!");
 }
}

public class Marketer extends Employee {
 public void advertise() {
 System.out.println("Act now while supplies last!");
 }

 public double getSalary() {
 return super.getSalary() + 10000.0;
 }
}

28

Inheritance and constructors
•  Imagine that we want to give employees more vacation days

the longer they've been with the company.
–  For each year worked, we'll award 2 additional vacation days.

– When an Employee object is constructed, we'll pass in the
number of years the person has been with the company.

–  This will require us to modify our Employee class and add some
new state and behavior.

–  Exercise: Make necessary modifications to the Employee class.

29

Modified Employee class
public class Employee {
 private int years;

 public Employee(int initialYears) {
 years = initialYears;
 }

 public int getHours() {
 return 40;
 }

 public double getSalary() {
 return 50000.0;
 }

 public int getVacationDays() {
 return 10 + 2 * years;
 }

 public String getVacationForm() {
 return "yellow";
 }
}

30

Problem with constructors
•  Now that we've added the constructor to the Employee class,

our subclasses do not compile. The error:

Lawyer.java:2: cannot find symbol
symbol : constructor Employee()
location: class Employee
public class Lawyer extends Employee {
 ^

–  The short explanation: Once we write a constructor (that requires

parameters) in the superclass, we must now write constructors
for our employee subclasses as well.

–  The long explanation: (next slide)

31

The detailed explanation
•  Constructors are not inherited.

–  Subclasses don't inherit the Employee(int) constructor.

–  Subclasses receive a default constructor that contains:

public Lawyer() {
 super(); // calls Employee() constructor
}

•  But our Employee(int) replaces the default Employee().
–  The subclasses' default constructors are now trying to call a non-

existent default Employee constructor.

32

Calling superclass constructor
 super(parameters);

–  Example:
 public class Lawyer extends Employee {
 public Lawyer(int years) {
 super(years); // calls Employee constructor
 }
 ...
 }

–  The super call must be the first statement in the constructor.

–  Exercise: Make a similar modification to the Marketer class.

33

Modified Marketer class
// A class to represent marketers.
public class Marketer extends Employee {
 public Marketer(int years) {
 super(years);
 }

 public void advertise() {
 System.out.println("Act now while supplies last!");
 }

 public double getSalary() {
 return super.getSalary() + 10000.0;
 }
}

–  Exercise: Modify the Secretary subclass.
•  Secretaries' years of employment are not tracked.
•  They do not earn extra vacation for years worked.

34

Modified Secretary class
// A class to represent secretaries.
public class Secretary extends Employee {
 public Secretary() {
 super(0);
 }

 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

–  Since Secretary doesn't require any parameters to its
constructor, LegalSecretary compiles without a constructor.

•  Its default constructor calls the Secretary() constructor.

35

Inheritance and fields
•  Try to give lawyers $5000 for each year at the company:

public class Lawyer extends Employee {
 ...
 public double getSalary() {
 return super.getSalary() + 5000 * years;
 }
 ...
}

•  Does not work; the error is the following:
Lawyer.java:7: years has private access in Employee
 return super.getSalary() + 5000 * years;
 ^

•  Private fields cannot be directly accessed from subclasses.
– One reason: So that subclassing can't break encapsulation.
– How can we get around this limitation?

36

Improved Employee code
Add an accessor for any field needed by the subclass.

public class Employee {
 private int years;

 public Employee(int initialYears) {
 years = initialYears;
 }

 public int getYears() {
 return years;
 }
 ...
}

public class Lawyer extends Employee {
 public Lawyer(int years) {
 super(years);
 }

 public double getSalary() {
 return super.getSalary() + 5000 * getYears();
 }
 ...
}

37

Revisiting Secretary
•  The Secretary class currently has a poor solution.

– We set all Secretaries to 0 years because they do not get a
vacation bonus for their service.

–  If we call getYears on a Secretary object, we'll always get 0.
–  This isn't a good solution; what if we wanted to give some other

reward to all employees based on years of service?

•  Redesign our Employee class to allow for a better solution.

38

Improved Employee code
•  Let's separate the standard 10 vacation days from those that

are awarded based on seniority.

public class Employee {
 private int years;

 public Employee(int initialYears) {
 years = initialYears;
 }

 public int getVacationDays() {
 return 10 + getSeniorityBonus();
 }

 // vacation days given for each year in the company
 public int getSeniorityBonus() {
 return 2 * years;
 }
 ...
}

–  How does this help us improve the Secretary?

39

Improved Secretary code
•  Secretary can selectively override getSeniorityBonus;

when getVacationDays runs, it will use the new version.
–  Choosing a method at runtime is called dynamic binding.

public class Secretary extends Employee {
 public Secretary(int years) {
 super(years);
 }

 // Secretaries don't get a bonus for their years of service.
 public int getSeniorityBonus() {
 return 0;
 }

 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

