
Building Java Programs
Chapter 12

Recursion

A small set of the total slides just to demonstrate –
this is a more advanced topic (CSE 143)

Subset of the Supplement Lesson slides from: Building Java Programs, Chapter 12
by Stuart Reges and Marty Stepp (http://www.buildingjavaprograms.com/).

2

Recursion

•  recursion: The definition of an operation in terms of itself.
–  Solving a problem using recursion depends on solving

smaller occurrences of the same problem.

•  recursive programming: Writing methods that call
themselves to solve problems recursively.

–  An equally powerful substitute for iteration (loops)
–  Particularly well-suited to solving certain types of problems

3

Why learn recursion?

•  "cultural experience" - A different way of thinking of problems

• Can solve some kinds of problems better than iteration

•  Leads to elegant, simplistic, short code (when used well)

• Many programming languages ("functional" languages such as
Scheme, ML, and Haskell) use recursion exclusively (no loops)

• A key component of the rest of our assignments in CSE 143

4

Recursion and cases

• Every recursive algorithm involves at least 2 cases:

–  base case: A simple occurrence that can be answered directly.

–  recursive case: A more complex occurrence of the problem that
cannot be directly answered, but can instead be described in
terms of smaller occurrences of the same problem.

–  Some recursive algorithms have more than one base or recursive
case, but all have at least one of each.

–  A crucial part of recursive programming is identifying these cases.

5

Recursion in Java

• Consider the following method to print a line of * characters:

// Prints a line containing the given number of stars.
// Precondition: n >= 0
public static void printStars(int n) {
 for (int i = 0; i < n; i++) {
 System.out.print("*");
 }
 System.out.println(); // end the line of output
}

• Write a recursive version of this method (that calls itself).
–  Solve the problem without using any loops.
–  Hint: Your solution should print just one star at a time.

6

A basic case

• What are the cases to consider?
–  What is a very easy number of stars to print without a loop?

public static void printStars(int n) {
 if (n == 1) {
 // base case; just print one star
 System.out.println("*");
 } else {
 ...
 }
}

7

Handling more cases

• Handling additional cases, with no loops (in a bad way):

public static void printStars(int n) {
 if (n == 1) {
 // base case; just print one star
 System.out.println("*");
 } else if (n == 2) {
 System.out.print("*");
 System.out.println("*");
 } else if (n == 3) {
 System.out.print("*");
 System.out.print("*");
 System.out.println("*");
 } else if (n == 4) {
 System.out.print("*");
 System.out.print("*");
 System.out.print("*");
 System.out.println("*");
 } else ...
}

8

Handling more cases 2

• Taking advantage of the repeated pattern (somewhat better):

public static void printStars(int n) {
 if (n == 1) {
 // base case; just print one star
 System.out.println("*");
 } else if (n == 2) {
 System.out.print("*");
 printStars(1); // prints "*"
 } else if (n == 3) {
 System.out.print("*");
 printStars(2); // prints "**"
 } else if (n == 4) {
 System.out.print("*");
 printStars(3); // prints "***"
 } else ...
}

9

Using recursion properly

• Condensing the recursive cases into a single case:

public static void printStars(int n) {
 if (n == 1) {
 // base case; just print one star
 System.out.println("*");
 } else {
 // recursive case; print one more star
 System.out.print("*");
 printStars(n - 1);
 }
}

10

"Recursion Zen"

• The real, even simpler, base case is an n of 0, not 1:

public static void printStars(int n) {
 if (n == 0) {
 // base case; just end the line of output
 System.out.println();
 } else {
 // recursive case; print one more star
 System.out.print("*");
 printStars(n - 1);
 }
}

–  Recursion Zen: The art of properly identifying the best set of
cases for a recursive algorithm and expressing them elegantly.

(A CSE 143 informal term)

11

Recursive tracing

• Consider the following recursive method:

public static int mystery(int n) {
 if (n < 10) {
 return n;
 } else {
 int a = n / 10;
 int b = n % 10;
 return mystery(a + b);
 }
}

–  What is the result of the following call?

mystery(648)

12

A recursive trace

mystery(648):
§  int a = 648 / 10; // 64
§  int b = 648 % 10; // 8
§  return mystery(a + b); // mystery(72)

mystery(72):

§ int a = 72 / 10; // 7
§ int b = 72 % 10; // 2
§ return mystery(a + b); // mystery(9)

mystery(9):

§ return 9;

