
Advanced if/else
& Cumulative Sum

Subset of the Supplement Lesson slides from: Building Java Programs, Chapter 4
by Stuart Reges and Marty Stepp (http://www.buildingjavaprograms.com/)

2

Questions to consider

• What are the advantages of using Returns?

• What do we have to consider when returning a value in a
series of nested if/else’s?

• What additional Operators do we need to make our if
conditions (tests) more useful?

3

if/else with return
// Returns the larger of the two given integers.
public static int max(int a, int b) {
 if (a > b) {
 return a;
 } else {
 return b;
 }
}

• Methods can return different values using if/else
–  Whichever path the code enters, it will return that value.
–  Returning a value causes a method to immediately exit.
–  All paths through the code must reach a return statement.

4

All paths must return
public static int max(int a, int b) {
 if (a > b) {
 return a;
 }
 // Error: not all paths return a value
}

• The following also does not compile:

public static int max(int a, int b) {
 if (a > b) {
 return a;
 } else if (b >= a) {
 return b;
 }
}

–  The compiler thinks if/else/if code might skip all paths, even
though mathematically it must choose one or the other.

5

if/else, return question

• Write a method quadrant that accepts a pair of real numbers
x and y and returns the quadrant for that point:

–  Example: quadrant(-4.2, 17.3) returns 2
• If the point falls directly on either axis, return 0.

x+ x-

y+

y-

quadrant 1 quadrant 2

quadrant 3 quadrant 4

6

Logic

7

Logical operators

• Tests can be combined using logical operators:

•  "Truth tables" for each, used with logical values p and q:

Operator Description Example Result

&& and (2 == 3) && (-1 <
5)

false

|| or (2 == 3) || (-1 <
5)

true

! not !(2 == 3) true

p q p && q p || q

true true true true

true false false true

false true false true

false false false false

p !p

true false

false true

8

Evaluating logic expressions

• Relational operators have lower precedence than math.

5 * 7 >= 3 + 5 * (7 - 1)
5 * 7 >= 3 + 5 * 6
35 >= 3 + 30
35 >= 33
true

• Relational operators cannot be "chained" as in algebra.

2 <= x <= 10
true <= 10 (assume that x is 15)
error!

–  Instead, combine multiple tests with && or ||

2 <= x && x <= 10
true && false
false

9

Logical questions

• What is the result of each of the following expressions?

 int x = 42;
 int y = 17;
 int z = 25;

A: y < x && y <= z
B: x % 2 == y % 2 || x % 2 == z % 2
C: x <= y + z && x >= y + z
D: !(x < y && x < z)
E: (x + y) % 2 == 0 || !((z - y) % 2 == 0)

• Answers: A: true, B: false, C: true, D: true, E:false

10

if/else, return question

• Write a method quadrant that accepts a pair of real numbers
x and y and returns the quadrant for that point:

–  Example: quadrant(-4.2, 17.3) returns 2
• If the point falls directly on either axis, return 0.

x+ x-

y+

y-

quadrant 1 quadrant 2

quadrant 3 quadrant 4

11

if/else, return answer
public static int quadrant(double x, double y) {
 if (x > 0 && y > 0) {
 return 1;
 } else if (x < 0 && y > 0) {
 return 2;
 } else if (x < 0 && y < 0) {
 return 3;
 } else if (x > 0 && y < 0) {
 return 4;
 } else { // at least one coordinate equals 0
 return 0;
 }
}

12

Code Sample Example

• Write a method daysInMonth that accepts an integer
representing the month and returns the number of days in that
month.

• Assume there are no leap years

• Examples:
 daysInMonth(2) returns 28
 daysInMonth(5) returns 31

Cumulative algorithms

14

Cumulative?

• What does “cumulative” mean?
 To increase by successive additions. Accumulation.

• What kind of problems are solved accumulating values?
 Series, summation for averages, approximation for Pi, etc.

• What does any cumulative activity start with?
 An initial value (that’s key!)

15

Adding many numbers

• How would you find the sum of all integers from 1-1000?

// This may require a lot of typing
int sum = 1 + 2 + 3 + 4 + ... ;
System.out.println("The sum is " + sum);

• What if we want the sum from 1 - 1,000,000?
Or the sum up to any maximum?
–  How can we generalize the above code?

16

Cumulative sum loop
 int sum = 0;
 for (int i = 1; i <= 1000; i++) {
 sum = sum + i;
 }
 System.out.println("The sum is " + sum);

•  cumulative sum: A variable that keeps a sum in progress and
is updated repeatedly until summing is finished.

–  The sum in the above code is an attempt at a cumulative sum.

–  Cumulative sum variables must be declared outside the loops that
update them, so that they will still exist after the loop.

17

Cumulative product

• This cumulative idea can be used with other operators:

int product = 1;
for (int i = 1; i <= 20; i++) {
 product = product * 2;
}
System.out.println("2 ^ 20 = " + product);

–  How would we make the base and exponent adjustable?

18

Scanner and cumul. sum

• We can do a cumulative sum of user input:

 Scanner console = new Scanner(System.in);
 int sum = 0;
 for (int i = 1; i <= 100; i++) {
 System.out.print("Type a number: ");
 sum = sum + console.nextInt();
 }
 System.out.println("The sum is " + sum);

• What if we wanted to first specify how many values are to be

read in and then also print out the average of the values?
 Let’s code this...

19

Factoring if/else code

•  factoring: Extracting common/redundant code.
–  Can reduce or eliminate redundancy from if/else code.

• Example:

if (a == 1) {
 System.out.println(a);
 x = 3;
 b = b + x;
} else if (a == 2) {
 System.out.println(a);
 x = 6;
 y = y + 10;
 b = b + x;
} else { // a == 3
 System.out.println(a);
 x = 9;
 b = b + x;
}

System.out.println(a);
x = 3 * a;
if (a == 2) {
 y = y + 10;
}
b = b + x;

