
Advanced if/else 
& Cumulative Sum 

Subset of the Supplement Lesson slides from: Building Java Programs, Chapter 4 
by Stuart Reges and Marty Stepp (http://www.buildingjavaprograms.com/ ) 
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Questions to consider 

• What are the advantages of using Returns? 

• What do we have to consider when returning a value in a 
series of nested if/else’s? 

• What additional Operators do we need to make our if 
conditions (tests) more useful? 



3 

if/else with return 
// Returns the larger of the two given integers. 
public static int max(int a, int b) { 
    if (a > b) { 
        return a; 
    } else { 
        return b; 
    } 
} 
 

• Methods can return different values using if/else 
–  Whichever path the code enters, it will return that value. 
–  Returning a value causes a method to immediately exit. 
–  All paths through the code must reach a return statement. 
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All paths must return 
public static int max(int a, int b) { 
    if (a > b) { 
        return a; 
    } 
    // Error: not all paths return a value 
} 
 
 

• The following also does not compile: 
 

public static int max(int a, int b) { 
    if (a > b) { 
        return a; 
    } else if (b >= a) { 
        return b; 
    } 
} 
 

–  The compiler thinks if/else/if code might skip all paths, even 
though mathematically it must choose one or the other. 
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if/else, return question 

• Write a method quadrant that accepts a pair of real numbers 
x and y and returns the quadrant for that point:  

–  Example:  quadrant(-4.2, 17.3) returns 2 
• If the point falls directly on either axis, return 0.  

x+ x- 

y+ 

y- 

quadrant 1 quadrant 2 

quadrant 3 quadrant 4 
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Logic 
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Logical operators 

• Tests can be combined using logical operators: 

•  "Truth tables" for each, used with logical values p and q: 

Operator Description Example Result 

&& and (2 == 3) && (-1 < 
5)  

false 

|| or (2 == 3) || (-1 < 
5) 

true 

! not !(2 == 3) true 

p q p && q p || q 

true true true true 

true false false true 

false true false true 

false false false false 

p !p 

true false 

false true 
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Evaluating logic expressions 

• Relational operators have lower precedence than math. 
 

5 * 7 >= 3 + 5 * (7 - 1) 
5 * 7 >= 3 + 5 * 6 
35    >= 3 + 30 
35    >= 33 
true 
 

• Relational operators cannot be "chained" as in algebra. 
 

2 <= x <= 10 
true   <= 10             (assume that x is 15) 
error! 
 
 

–  Instead, combine multiple tests with && or || 
 

2 <= x && x <= 10 
true   && false 
false 
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Logical questions 

• What is the result of each of the following expressions? 
 

 int x = 42; 
 int y = 17; 
 int z = 25; 

 

A: y < x && y <= z 
B: x % 2 == y % 2 || x % 2 == z % 2 
C: x <= y + z && x >= y + z 
D: !(x < y && x < z) 
E: (x + y) % 2 == 0 || !((z - y) % 2 == 0) 
 

• Answers: A: true, B: false, C: true, D: true, E:false 
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if/else, return question 

• Write a method quadrant that accepts a pair of real numbers 
x and y and returns the quadrant for that point:  

–  Example:  quadrant(-4.2, 17.3) returns 2 
• If the point falls directly on either axis, return 0.  

x+ x- 

y+ 

y- 

quadrant 1 quadrant 2 

quadrant 3 quadrant 4 
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if/else, return answer 
public static int quadrant(double x, double y) { 
    if (x > 0 && y > 0) { 
        return 1; 
    } else if (x < 0 && y > 0) { 
        return 2; 
    } else if (x < 0 && y < 0) { 
        return 3; 
    } else if (x > 0 && y < 0) { 
        return 4; 
    } else {      // at least one coordinate equals 0 
        return 0; 
    } 
} 
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Code Sample Example 

• Write a method daysInMonth that accepts an integer 
representing the month and returns the number of days in that 
month. 

• Assume there are no leap years 

• Examples:  
  daysInMonth(2) returns 28 
  daysInMonth(5) returns 31 



Cumulative algorithms 
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Cumulative? 

• What does “cumulative” mean?   
 To increase by successive additions.  Accumulation. 

• What kind of problems are solved accumulating values?   
 Series, summation for averages, approximation for Pi, etc.   

• What does any cumulative activity start with? 
 An initial value (that’s key!) 
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Adding many numbers 

• How would you find the sum of all integers from 1-1000? 
 
// This may require a lot of typing 
int sum = 1 + 2 + 3 + 4 + ... ; 
System.out.println("The sum is " + sum); 
 
 
 

• What if we want the sum from 1 - 1,000,000? 
Or the sum up to any maximum? 
–  How can we generalize the above code? 
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Cumulative sum loop 
 int sum = 0; 
 for (int i = 1; i <= 1000; i++) { 
     sum = sum + i; 
 } 
 System.out.println("The sum is " + sum); 
 
 

•  cumulative sum: A variable that keeps a sum in progress and 
is updated repeatedly until summing is finished. 

–  The sum in the above code is an attempt at a cumulative sum. 

–  Cumulative sum variables must be declared outside the loops that 
update them, so that they will still exist after the loop. 
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Cumulative product 

• This cumulative idea can be used with other operators: 
 

int product = 1; 
for (int i = 1; i <= 20; i++) { 
    product = product * 2; 
} 
System.out.println("2 ^ 20 = " + product); 
 

–  How would we make the base and exponent adjustable? 
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Scanner and cumul. sum 

• We can do a cumulative sum of user input: 
 
 Scanner console = new Scanner(System.in); 
 int sum = 0; 
 for (int i = 1; i <= 100; i++) { 
     System.out.print("Type a number: "); 
     sum = sum + console.nextInt(); 
 } 
 System.out.println("The sum is " + sum); 

 
• What if we wanted to first specify how many values are to be 

read in and then also print out the average of the values? 
  Let’s code this... 
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Factoring if/else code 

•  factoring: Extracting common/redundant code. 
–  Can reduce or eliminate redundancy from if/else code. 

• Example: 
 

if (a == 1) { 
    System.out.println(a); 
    x = 3; 
    b = b + x; 
} else if (a == 2) { 
    System.out.println(a); 
    x = 6; 
    y = y + 10; 
    b = b + x; 
} else {  // a == 3 
    System.out.println(a); 
    x = 9; 
    b = b + x; 
} 

System.out.println(a); 
x = 3 * a; 
if (a == 2) { 
    y = y + 10; 
} 
b = b + x; 


