

BITS & BYTES

Binary Data in Memory

© Copyright: Jasleen Kaur. 2011.

Introduction to Programming

23

What does memory look like?

MEMORY

- □ All computers are binary! (0, 1)
 - > Represented electronically, magnetically, etc.
- Binary is used to store everything:

> Numbers: 0, 1, -50, ...

> Characters: a, \$,), ...

> Instructions: ADD, STORE, ...

> Colors: Red, Blue, Green, ...

© Copyright: Jasleen Kaur. 2011.

Introduction to Programming

Bytes

- Most computers use groups of <u>8 bits</u>: BYTE
- Each byte
 - > Can store numbers: 00000000 (0) to 11111111 (255)
 - > Has a memory address: 0, 1, 2, ...
- □ To store bigger numbers, we use several bytes:
 - > 2 Bytes 0 to 65,535 (< 64 K)
 - > 4 Bytes 0 to 4,294,967,295 (< 4 G)
 - Or use 1 bit for sign ±
 - > 4 Bytes $\pm 2,147,483,648$ (< 2 G)

© Copyright: Jasleen Kaur. 2011.

Introduction to Programming

27

Storage Capacity

- Every memory device has a storage capacity, indicating the number of bytes (8 bits) it can hold
- Various units:

<u>Unit</u>	<u>Symbol</u>	Number of Bytes
kilobyte	KB	$2^{10} = 1024$
megabyte	MB	$2^{20} = 1.048$ million
gigabyte	GB	$2^{30} = 1.073$ billion
terabyte	ТВ	$2^{40} = 1.099 \text{ trillion}$

© Copyright: Jasleen Kaur. 2011.

Introduction to Programming

Computer Science Joke

There are 10 kinds of people.

Those who understand binary and those who do not.

© Copyright: Jasleen Kaur. 2011

Introduction to Programming

2

COMPUTER SOFTWARE SYSTEMS

Software: Compilers, Operating Systems, ...

© Copyright: Jasleen Kaur. 2011.

Introduction to Programming

Programs in Binary

 One implication of binary memory is that programs & data look like this!

- Most people write programs in a human-readable form
 - > And then use a program to translate to binary
- Typical translation steps:

High-level languages → Assembly code → Binary code

Compiler / Interpreter

Assembler

© Copyright: Jasleen Kaur. 2011.

Introduction to Programming

31

Assemblers

- Assembly code:
 - > Mnemonic instruction names

01011010

ADD ☑

> Mnemonic memory locations

1000 ☒

SALARY V

- Basically, assembly code is 1-1 to binary machine code
 - > Just easier to read
- Assembler:
 - ➤ Program that translates assembly code to machine code ADD SALARY, BONUS → 01011010 ...

© Copyright: Jasleen Kaur. 2011.

Introduction to Programming

Compilers

- Higher-level source language
 - ➤ 1 source line → possibly many machine language instructions

salary = regHours*wage + otHours*wage*1.5;

- 3 multiply
- 1 add
- 1 store
- Compiler:
 - > Translates high-level source to assembly code
- Need both compiler and assembler to run
 source → assembly code → binary machine code
 - > Translated once (executed many times)

© Copyright: Jasleen Kaur. 2011

Introduction to Programming

33

Interpreters

- Translate and execute each line as it is encountered
- Pros:
 - > No start-up delay
 - > Unexecuted code is not translated
 - > Better error handling
- Cons:
 - > Slower repeated code is translated repeatedly
- □ We'll see both compilation and interpretation
 Java source → byte code → machine compilation

Java source byte code machine code (intermediate)

> Helps in portability

© Copyright: Jasleen Kaur. 2011.

Introduction to Programming

Operating Systems: a little history

Old days:

```
run - 30 min

change over program - 1 min

yen - 30 min
```

Then, computers got faster; but people didn't

```
run – 1 sec
change over program – 1 min
... 1.6 % efficiency!
```

- Basis for operating system (OS):
 - A program to manage transition from one program to another

© Copyright: Jasleen Kaur. 2011.

Introduction to Programming

35

Operating Systems: time-sharing

- Busy executive needs information for project X
 - Asks assistant, waits for response. Now what?
 - > Work on another project!

- > Computers much faster than humans
- > Also helps share costs!

© Copyright: Jasleen Kaur. 2011.

Introduction to Programming

INTERNET & THE WEB

Client-server architecture

© Copyright: Jasleen Kaur. 2011.

Introduction to Programming

37

Computer Networks

- Enable communication
 - > Allow sending messages of <u>any length</u> <u>reliably</u> from any computer to another
- □ Enable information-sharing, e-commerce, ...
 - > e.g., emails, chat, facebook, wikipedia, amazon, ...
- Enable sharing of resources:
 - ➤ Advent of PCs in 1980s ⇒ sharing was lost!
 - Expensive devices: printer
 - Expensive software : compiler
 - > Networks restored resource sharing
 - Connect computers to printers, scanners, ...

© Copyright: Jasleen Kaur. 2011.

Introduction to Programming

What is WWW?

- World-wide Web (WWW)
 - > A system of inter-linked *hypertext* documents
 - > Accessed via the Internet
- □ WWW ≠ Internet
 - > Internet is the *infrastructure* on which WWW is built
 - > e.g., FEDEX built on top of airports, air traffic control
- WWW built using the "client-server architecture"

© Copyright: Jasleen Kaur. 2011.

Introduction to Programming

39

- Server: a computer running a server program
 - > Waits (listens) for and responds to client initiation/requests
 - > Always "on"
 - > e.g., Web servers, email servers, ftp servers, gaming servers
- Client: a computer running a client program
 - > Initiates contact with the server
 - Sends a request to the server (after initiation)
 - > e.g., browser (web), thunderbird (email)

© Copyright: Jasleen Kaur. 2011.

Introduction to Programming

