
Homework 12: Color Checker

Goal: To understand the basics of processing images in Processing. This assignment
teaches new material, so you will need to consult the Processing Reference for full
understanding.

Overview	

Our plan is to display a .jpg image, and then program the following tiny app, Color
Checker: The user moves his or her mouse over the photo, and the RGB colors of the pixel
that the mouse is on are displayed. For example, my photo and the running program are
shown here:

As my mouse moves over Adele’s lip, the RGB color of the pixel
it’s on is shown at the bottom of the program window as 166, 98,
84. When I click the mouse, the image is replaced with that color
as a new background color, i.e. background(166,98,84).
When I click it again, I am back to the original picture with the
RGB values displaying as my mouse moves around. That’s it.

Displaying	
 A	
 Photo	

Recall that when we were working with letters, we needed to go through a series of steps to
actually use the letters. Images, like .jpg photos, work in a very similar way. Here are the
steps to get a photo onto your canvas:

1) Put the photo in the same folder as the .pde file; suppose it’s called photo.jpg
2) Find the width and height of the photo (Windows, at the bottom of the file list when

the file is selected; Mac, in the Info display (use control+CLICK > Get Info).)
3) Declare an image variable of datatype PImage, as in PImage baseIm;

CSE120: Computer Science: Principles

4) Define the size() to be equal to the photo’s width, height; this is generally not
necessary, but it simplifies matters for us today.

5) Next load the photo into your program and give it a name by adding to setup() the
statement, baseIm = loadImage("photo.jpg");

6) Finally, in draw()position the image on the canvas starting in the upper left
corner using the statement image(baseIm, 0, 0);

7) Finally, follow the step (6) image() call with updatePixels(); call to get
the screen to change whenever you change it.

If you have any questions about these operations, check the Processing Reference. At this
point running your program should display the image. Try it!

Linearizing	
 A	
 Picture	

Next we need to grab the RGB values from the pixels. The first step is to ask Processing to
fill an array, called pixels[], with the image’s pixels. You do this with the statement,
pixels(); After doing so, the pixels[] array is filled. The ith pixel is referenced as
pixels[i], and of course, they start at 0.

The curious thing about the array of pixels is that it is one-dimensional despite the fact that
the picture is two-dimensional. So, the pixel in the upper left corner is pixels[0] and
the pixel in the lower right corner is pixels[width*height-1]. (Recall that width
and height are the number you used in the size() function in setup().

The fact that the pixels are stretched out in a line isn’t much of a problem, but it does mean
that we need to covert from 2-D to 1-D. For example, if mouseX and mouseY are the
position of the mouse, then its pixel is found at pixels[mouseY*width + mouseX].
Why? If we think of the image as a 2-D array of pixels

each row contributes width number of pixels, and there are mouseY of them up to the
row where the Mouse Pointer is. And, the mouse pointer is mouseX pixels over to the
right. So, in the example, width is 16, mouseY is 3 and mouseX is 7, because we always
start counting at 0, i.e. 0-origin counting, which makes the pixels[3*16+7] ==
pixels[55]. Make sense?

width

mouseY

mouseX Mouse
Pointer

0 55

Extracting	
 RGB	

At the top of the program declare a variable c of datatype color, and in the draw()
function assign to it the pixel under the mouse pointer, as just explained. The RGB colors
of this pixel can be extracted by the functions red(c), green(c) and blue(c). Again,
check the Processing Reference for details. They actually have float datatype, but we can
make them integers with the function int(), as in int(red(c)). So, after assigning
the c variable the pixel pointed at by the mouse, write it to the console with
println(int(red(c)+" "+int(green(c)+" "+int(blue(c));
Here, the color values are converted to a string and spaces are positioned in between using
the concatenate operation (+). You should now be able to move the mouse around and see
the pixels printed at the bottom of your working window. Try it!

Checking	
 Color	

Now, to finish the app. You will need a Boolean variable that starts out true. Let’s call it
check. Your entire revised draw() program will be an if-statement testing this Boolean
variable. If it is true, then your app does pretty much what we’ve done so far: image(),
loadPixes(), updatePixels(), assign, println(). Otherwise it does
nothing. And, in addition, you need a mousePressed() function. It specifies a new
background using the extracted colors (float version), and flips the truth of the Boolean
variable.

That’s all there is to it. Try it out!

Wrap	
 Up You have been introduced to the techniques of displaying .jpg images (.gif
and .png work the same way, but with different file extensions, of course). You have also
found out how to load pixels into the working array pixels[], and extract the colors
from each pixel.

Turn	
 In Turn in your commented program – your grade will include a component for the
quality of your comments – and submit it to the dropbox.

