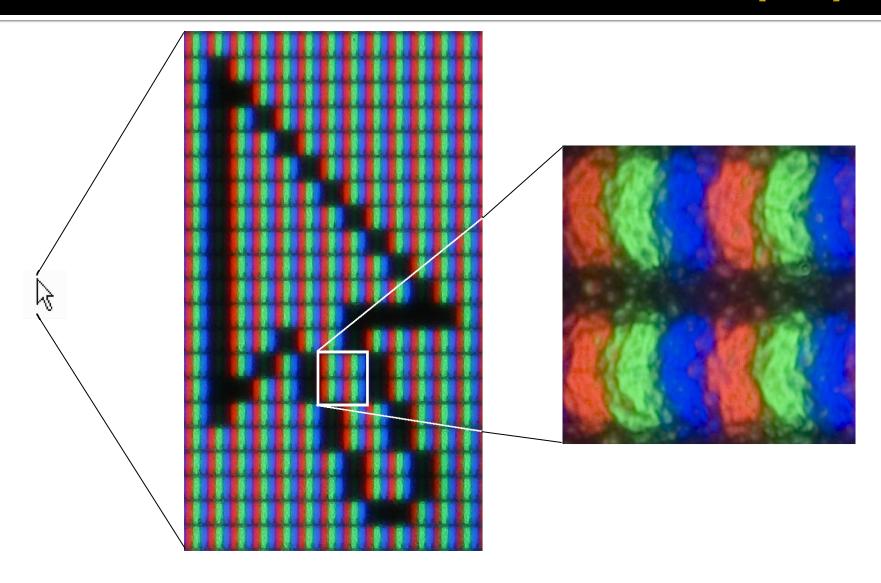
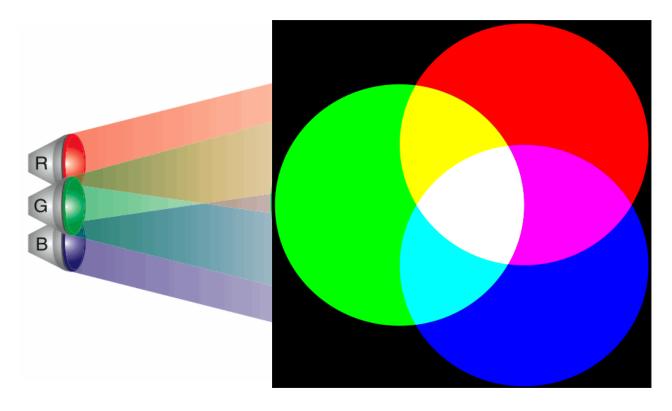
Adding some light to computing

Bits of Color


Lawrence Snyder University of Washington, Seattle

Return To RGB

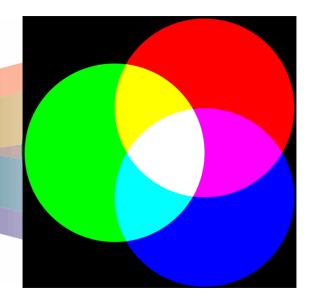
 Recall that the screen (and other video displays) use red-green-blue lights, arranged in an array of picture elements, or *pixels*

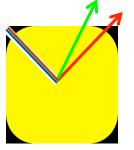


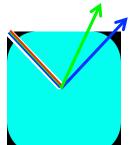
Actual Pixels From TFT LCD Display

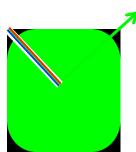
Combining Colored Light

The Amazing Properties of Colored Light!

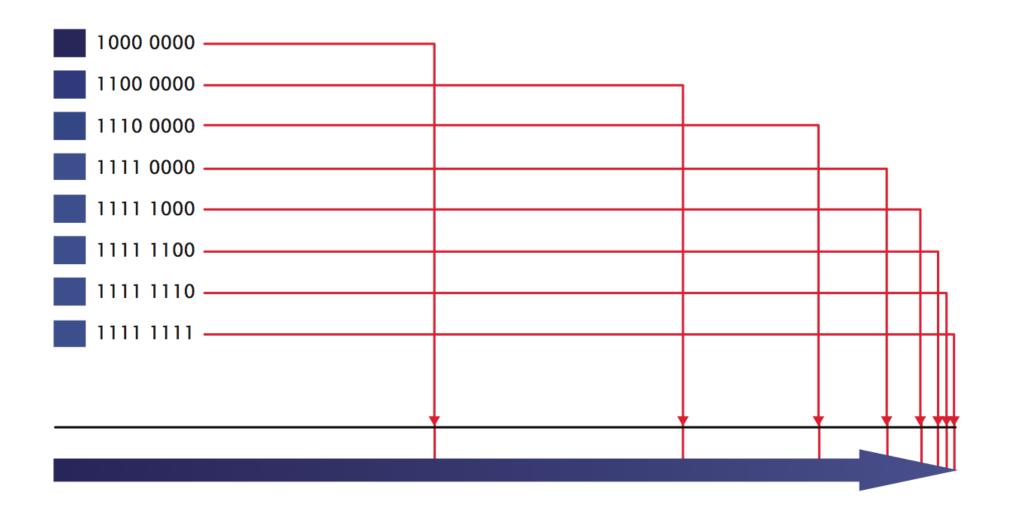

Caution: It doesn't work like pigment

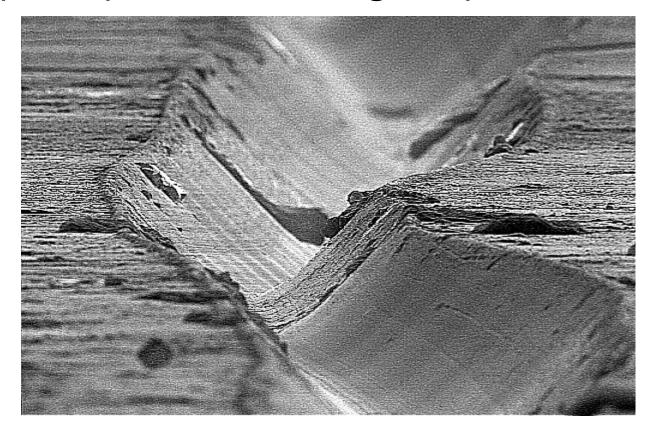

Green + Red = Yellow?


 Colored light seems to violate our grade school rule of green = blue + yellow


What gives?

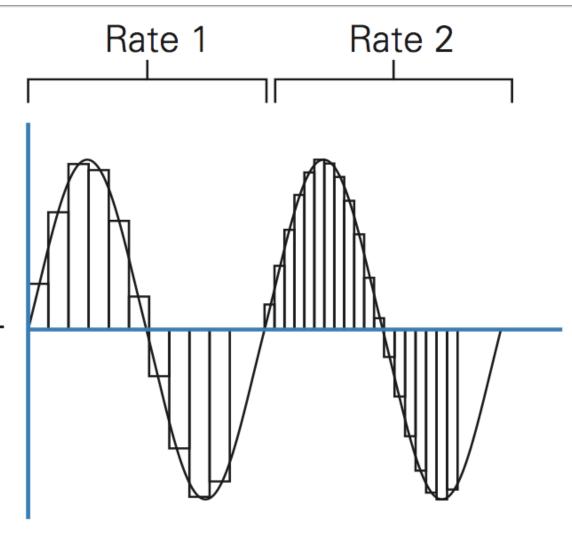
In pigment, the color we see is the reflected color from white light; the other colors are absorbed



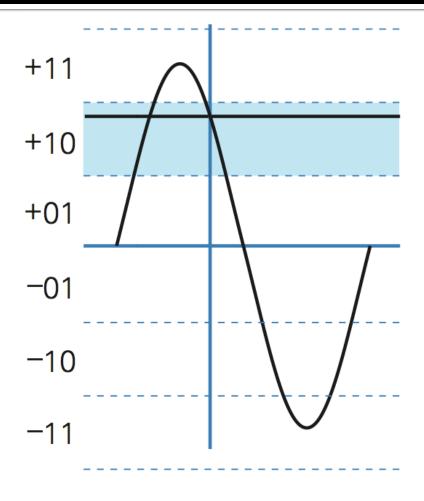


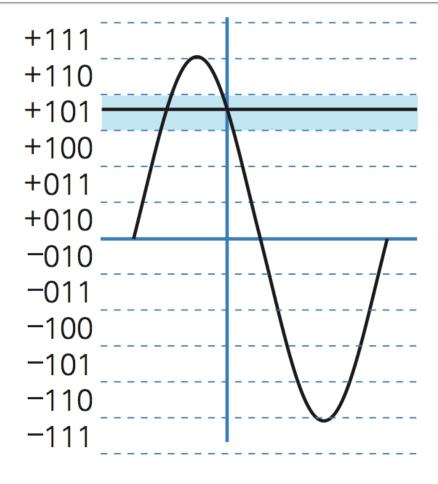
Each Bit Adds Another 1/2

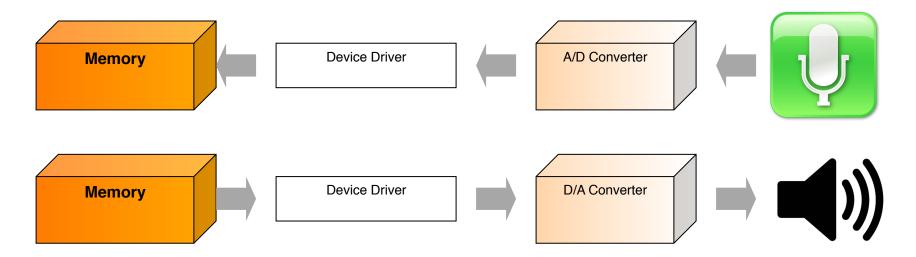
Not All Information Is Discrete


 Analogue information directly applies physical phenomena, e.g. vinyl records

Analog Signals Become Discrete


Sampling the wave ...




Time

Precision of the Sample

The World Is Analog – Go Between

Analog is needed for the "real world" Digital is best for "information world"

- Can be modified, enhanced, remixed, etc.
- Shared, stored permanently, reproduced, ...

Sampling Sound ...

- Going too slowly misses waves
- Going too fast keeps lots of redundant info
- The range of human hearing is 20-20,000 hz
 - Faster or slower, only the dog can hear it
 - Nyquist Rule: Sampling rate must be twice as fast as fastest frequency to be captured
- For technical reasons, the number is 44,100 hz
- How precise to sample: 16 bits gives -32k to 32k

Multimedia

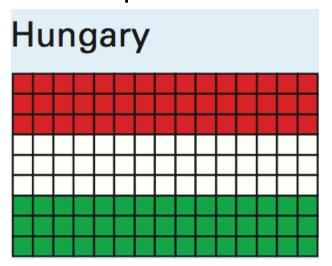
- Many different forms of online information with special representations
 - JPG, MP3, MPEG, WAV ...
 - Most forms of multimedia require many, many bits
 - A minute of digital audio:
 - 60 seconds x
 - 44,100 samples per second x
 - 16 bits each
 - x 2 for stereo
 - Is 84,672,000 bits, or 10,584,000 B
 - 1 hour is 635 MB!

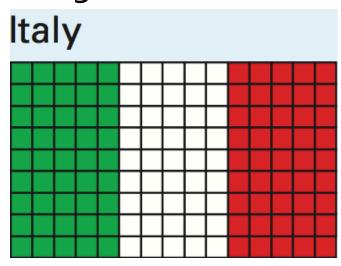
Compress: Change Representation

- Often, most of the bits are not needed MP3 audio is less than 1MB/min because many sounds can be eliminated – we can't hear them
- Compression ... comes in two forms
 - Lossless eliminated bits can be recovered
 - Lossy eliminated bits
 are gone for good ... MP3

Susanne Vega sings *Tom's Diner* https://www.youtube.com/watch?v=VGw3W10QxLA

Lossless Compression


- Lossless compression seems strange it eliminates bits that can be recovered again ... weren't they necessary in the first place???
- Consider a fax
 - Usually faxes use a scanner that produces rows of Os and 1s.
 - Compress by counting ... it's run-length encoding:
 0000000000000000000111111110000000011
 - == 22:0,7:1,8:0,2:1


GIF Uses Same Idea

 Graphics Interchange Format (GIF) uses several kinds of compression Color Table

			_	_		Ī
((\cap	\cap	r	l a	h	
_	$\mathbf{\mathcal{L}}$. ~		_		

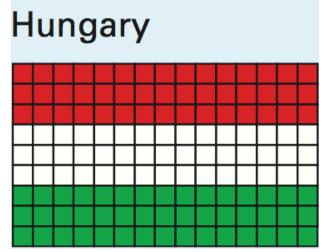
- Run Length Encoding
- Lemple/Ziv/Welch Encoding

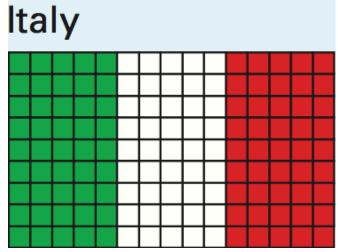
FF 00 00

FF FF FF

00 FF 00

Compare Images Using Glf


- Compare Hungarian Flag and Italian Flag
 - huFlag: [15 × 9] 45:1, 45:2, 45:3
 - itFlag: [15 x 9]


5:3,5:2,5:1,5:3,5:2,5:1,5:3,5:2,5:1,

5:3,5:2,5:1,5:3,5:2,5:1,5:3,5:2,5:1,

5:3,5:2,5:1,5:3,5:2,5:1,5:3,5:2,5:1

Color Table								
1	FF 00 00							
2	FF FF FF							
3	00 FF 00							

JPG is Lossy

 Areas of similar color are represented by one shade ... it's OK for a while

Review What We Know About Bits

- Facts about physical representation:
 - Information is represented by the presence or absence of a physical phenomenon (PandA)
 - Hole punched in a card; no hole [Hollerith]
 - Dog barks in the night; no barking in the night [Holmes]
 - Wire is electrically charged; wire is neutral
 - ETC
- Abstract all these cases with o and 1; it unifies them so we don't have to consider the details

Bits Work For Arithmetic

- Binary is sufficient for number representation (place/value) and arithmetic
 - The number base is 2, instead of 10
 - Binary addition is just like addition in any other base except it has fewer cases ... better for circuits
 - All arithmetic and standard calculations have binary equivalents
 - Pixels represented by amount of light intensity
- We conclude: bits "work" for quantities

Bytes – 8 bits in a row

- Bytes illustrate that bits can be grouped in sequence to generate unique patterns
 - 2 bits in sequence, 2² = 4 patterns: 00, 01, 10, 11
 - 4 bits in sequence, 2⁴ = 8 patterns: 0000, 0001, ...
 - 8 bits in sequence, 2⁸=256 patterns: 0000 0000, ...
- ASCII groups 8 bits in sequence
 - They seem to be assigned intelligently, but they're just patterns

	•																
	ASCII	0 0 0 0	0 0 0 1	0 0 1 0	0 0 1 1	0 1 0 0	0 1 0 1	0 1 1 0	0 1 1	1 0 0 0	1 0 0	1 0 1 0	1 0 1	1 1 0 0	1 1 0 1	1 1 1 0	1 1 1
	0000	N _U	s _H	s _x	EX	E _T	Eα	A _K	В	B _S	нт	L _F	YT	F _F	C _R	s _o	s _I
	0001	D _L	D ₁	D ₂	D ₃	D ₄	N _K	s _Y	ΕΣ	c _N	EM	s _B	E _C	F _S	G _s	R _S	us
	0010		!	"	#	\$	%	&	1	()	*	+	,	-		/
	0011	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
	0100	@	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0
	0101	Р	Q	R	S	Т	U	V	W	Х	Y	Z	[\]	^	_
	0110	-	a	b	С	d	е	f	g	h	i	j	k	1	m	n	0
	0111	р	q	r	ន	t	u	v	W	х	У	Z	{		}	~	D _T
	1000	80	81	82	83	I _N	N _L	ss	Es	н _s	Н	Y _s	P _D	P _V	R _I	s ₂	s ₃
	1001	D _C	P ₁	Pz	s _E	c _c	ММ	s _P	E _P	α ₈	α _α	Q _A	cs	s _T	os	P _M	A _P
	1010	A _O	i	¢	£	9	¥	-	§	••	©	o"	«	¬	-	®	-
)	1011	0	±	2	3	-	μ	¶	٠	,	1	0	>>	1/4	1/2	3/4	خ
	1100	À	Á	Â	Ã	Ä	Å	Æ	Ç	È	É	Ê	Ë	Ì	Í	Î	Ϊ
	1101	Ð	Ñ	Ò	Ó	Ô	Õ	Ö	×	Ø	Ù	Ú	Û	Ü	Ý	Þ	β
	1110	à	á	â	ã	ä	å	æ	ç	è	é	ê	ë	ì	í	î	ï
31	1111	ð	ñ	ò	ó	ô	õ	Ö	÷	Ø	ù	ú	û	ü	ý	Þ	ÿ

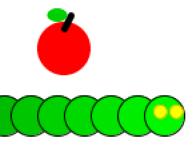
Representing Anything

- Compare binary arithmetic to ASCII
 - Binary encodes the positions to make using the information (numbers) easy, like for addition
 - ASCII assigns some pattern to each letter
- Given any finite set of things colors, computer addresses, English words, etc.
 - We might figure out a smart way to represent them as bits – colors can give light intensity of RGB
 - We can just assign patterns, and manipulate them by pattern matching – red can be oooo ooo1, dark red oooo oo1o, etc.

Bits Have No Inherent Meaning

- What does this represent: 0000 0000 1111 0001 0000 1000 0010 0000?
- You don't know until you know how it was encoded
 - As a binary number: 15,796,256
 - As a color, RGB(241,8,32)
 - As a computer instruction: Add 1, 7, 17
 - As ASCII: n₁₁ b_s ñ <space>
 - IP Address: 0.241.8.32
 - Hexadecimal number: 00 F1 08 20
 - ... → to infinity and beyond
 © 2010-2013 Larry Snyder, CSE

A Bias-free Universal Medium


This is the principle:

Bias-free Universal Medium Principle: Bits can represent all discrete information; bits have no inherent meaning

- Bits are it!!!
- "Computers encode information with bits, not numbers ... the bits might be numbers, but they might be a lot of other stuff instead"

Assignment 11 – Two Parts

Goal

- Part 1: HW 11, due Tuesday
- Part 2: Lab 7, do it in lab

Just Do It!