Algorithmic Design

Lawrence Snyder
University of Washington, Seattle

Algorithms

Def. An algorithm is a precise, systematic
process directing an agent to produce a
specified result

Five properties characterize algorithms

Input specified —tell form and amount of input required

Output specified —tell form and amount of output
produced

Definiteness — say explicitly what to do & in what order
Effectiveness — operations within agent’ s abilities
Finiteness — will stop and give an answer or say “none”

Programs are algorithms

2/3/14 © 2011-2014 Larry Snyder, CSE 2

Many Alternative Algorithms ...

There are always different algorithms to pick
Consider sorting ...

Put items in order

Exchange Sort: visit all
items, starting with first;
for each item, compare it
with all following, exchanging

any out of order pairs ...
Steadily finds 15t smallest,
then 2" smallest, then ...

N N = = = T = T ==Y N ARG, IR, B
W W W W Ul v 0w o v v o
Ul Ul N ©W ©W O© N N N 9
N ©W W NN Ul Ul U W W W
O N Ul U1 W W W P BB = R

2/3/14 © 2011-2014 Larry Snyder, CSE 3

Now Consider Bubble Sort...

Bubble Sort: go through
list in pairs, correcting out of
order pairs; can progressively
stop earlier and earlier ...

Pushes largest to the end,
then pushes second largest
to “next to end’ position,
then pushes ...

W W Ul Ul vl Ul U1l Ul Ul Ul
W BB~ U'IA\N W \IA\I N N O
Ul Ul R PN W W W O N
NN ~N~N N P P P O W W W
o O o O O o o L~ kP =

2/3/14 © 2011-2014 Larry Snyder, CSE 4

The Algorithms Are Different

The two algorithms take the same amount of
time, but they are different as we see from
the patterns of their comparisons

2/3/14 © 2011-2014 Larry Snyder, CSE 5

Key Question for Today & Always

How do we know that the algorithms work?
Developing algorithms is not just thinking them up

It is also reasoning through why they work ... you
need to know why explicitly enough to tell
someone else

Let’s see how to do that

2/3/14 © 2011-2014 Larry Snyder, CSE

Explaining Why Algorithm Works

Say What You're Claiming: "Exchange Sort
Puts Numbers or Words in Ascending Order”
It's not automatically

obvious

2/3/14 © 2011-2014 Larry Snyder, CSE 7

Explaining Why Algorithm Works

Formulate a way to see why it does work
Explain how “big picture-wise” ... use analogy
Cookie "“Spritzer” or Power Tool

241 Numbers Go

0)
19 In At Start

The Minimizer

— 1 Press For

Next One
Smallest Iltem

Comes Out

07 1

2/3/14 © 2011-2014 Larry Snyder, CSE

Explain Why Code Works That Way

If Minimizer Sorts, So 4 4 Ve
97 41
Does Exchange Sort 2~ A AT
The Operation of 27 TA 14597
Exchange SortWorks ~ #°7° tas2f
Like The Minimizer... 19754 14579
each pass "emits"the 19754
smallest item : 7@5 4
A
15974
A
14975

2/3/14 © 2011-2014 Larry Snyder, CSE 9

How About Bubble Sort?

Recall, Bubble Sort 9'; 741 541709

"pushes” the largest as A 4@1 79
far as possible to the 5734 41@79
right 5749 1 415709
A
57419 14579
57419
A
57419
A
54719
A
54179

2/3/14 © 2011-2014 Larry Snyder, CSE 10

Explaining Why Algorithm Works

Say WhatYou're Claiming: "Bubble Sort Puts
Numbers or Words in Ascending Order”
Explain how to do it “big picture-wise” ... use

an analogy: 1 Numbers Go
0 In At Start

The Maximizer

— 1 Press For
Next One

Largest Item

Comes Out
22 30 41

2/3/14 © 2011-2014 Larry Snyder, CSE 11

How About Bubble Sort?

If The Maximizer Sorts 9';741 54179
then so does Bubble 5 9'71‘41 4??1 2 9
. . A
works like the maxi- 57 984 41570
mizer A
57419 145709
57 4109
A
57 419
A
54719
A
54179

2/3/14 © 2011-2014 Larry Snyder, CSE 12

Sorting Analysis

What is the complexity of the sorting
algorithms that we just looked at?
Often has two parts: get item in order; repeat

Exchange — interchange to put smallest earlier

Bubble — compare adjacent values, push largest
further on

How many times do we do that

Be careful, not exactly how many times but what
“order” ...

2/3/14 © 2011-2014 Larry Snyder, CSE 13

Exchange Sort Work

This exchange sort needs
4 +3+2+1=10compares for
5 items

Generally for nitems
(n-1) +(n-2)+...+2+1
=n(n-1)/2

=1/2 (n% —n)

2/3/14 © 2011-2014 Larry Snyder, CSE

14

Merging

Consider another way
to sort

Merging two sorted
arrays into a single
sorted array is straight
forward

2/3/14 © 2011-2014 Larry Snyder, CSE = - 15

Merging

2/3/14 © 2011-2014 Larry Snyder, CSE 16

Merging

1

1
1

2/3/14 © 2011-2014 Larry Snyder, CSE 17

Merging

1

2/3/14 © 2011-2014 Larry Snyder, CSE 18

Merging

1

1

1

2/3/14 © 2011-2014 Larry Snyder, CSE 19

Merging

1

2/3/14 © 2011-2014 Larry Snyder, CSE 20

Merging

1

2/3/14 © 2011-2014 Larry Snyder, CSE 21

Merging

1

2/3/14 © 2011-2014 Larry Snyder, CSE 22

Merging

1

2/3/14 © 2011-2014 Larry Snyder, CSE 23

Merge Sort

2/3/14 © 2011-2014 Larry Snyder, CSE 24

Merge Sort

2/3/14 © 2011-2014 Larry Snyder, CSE 25

Merge Sort

2/3/14 © 2011-2014 Larry Snyder, CSE 26

Merge Sort

2/3/14 © 2011-2014 Larry Snyder, CSE 27

Merge Sort

2/3/14 © 2011-2014 Larry Snyder, CSE 28

Merge Sort

2/3/14 ©=2044-2044-Farry Snyder, CSE 29

Merge Sort

55 37 42

12 ‘ 39 10

2/3/14 ©=2044-2044-Farry Snyder, CSE 30

Merge Sort

55 37 42

12 ‘ 39 10

2/3/14 © 2011-2014 Larry Snyder, CSE 31

Merge Sort

2 ‘97 12 17 39 10 | 46 55 37‘42 80

55 37 42

12 ‘ 39 10

2/3/14 © 2011-2014 Larry Snyder, CSE 32

Merge Sort

2 ‘97 12 17 39 10 | 46 55 37‘42 80

55 37 42

12 ‘ 39 10

2/3/14 © 2011-2014 Larry Snyder, CSE 33

Merge Sort

2 12‘17 39 97 10 37 42‘46 55 8o
2 ‘97 12 17 39 10 | 46 55 37‘42 80
12‘39 10 | 55 37 42

2/3/14 © 2011-2014 Larry Snyder, CSE 34

Merge Sort

2 12‘17 39 97 10 37 42‘46 55 8o
2 ‘97 12 17 39 10 | 46 55 37‘42 80
12‘39 10 | 55 37 42

2/3/14 © 2011-2014 Larry Snyder, CSE 35

Merge Sort

2 1012 17 37 39 42 46 55 80 97

2 12‘17 39 97 10 37 42‘46 55 8o
2 ‘97 12 17 39 10 | 46 55 37‘42 80
12‘39 10 | 55 37 42

2/3/14 © 2011-2014 Larry Snyder, CSE 36

Analysis

A
S
v

n/2 n/2
nl4 nl/4 n/4 nl4 log,n
n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

Complexity = nlog,n

2/3/14 © 2011-2014 Larry Snyder, CSE 37

Algorithms At Many Levels of Detall

The binary code computers execute are
algorithms
Software developers create algorithms all the
time
Using languages like C, Processing, JavaScript, etc.
A compiler (it's a translator) converts to binary code
These cases specify computation in complete
detail because computers are clueless
But at other levels the agentis a person ...

2/3/14 © 2011 Larry Snyder, CSE 38

Google Query Algorithm

In their paper Larry Page and Sergey Brin gave
their algorithm for processing a Google query

1
2
3
4

. Parse the query.

. Convert words into wordIDs.

. aeek to the start of the doclist in the short barrel for every word.

. acan through the doclists until there is a document that matches all the
search terms.

. Compute the rank of that document for the query.

. If we are in the short barrels and at the end of any doclist, seek to the
start of the doclist in the full barrel for every word and go to step 4.

. If we are not at the end of any doclist go to step 4.

. Sort the documents that have matched by rank and return the top k.

L R |

o0 =]

Figure 4. Google Query Evaluation

Algorithms are “"given” at many levels of detail
— it depends on what agent needs

2/3/14 © 2011 Larry Snyder, CSE 39

Intersect Alphabetical Lists

(a)

(b)

(c)

1. Place a marker at head of every list
2. If all markers point to same URL, record a hit
3. Advance marker on alphabetically earliest list(s)
4. If any list is finished stop; otherwise go to step 2
A B C D E F
(_ , _ (. . .
amiss.com amiss.com amiss.com cmiss.com bmiss.com Hit.com
cmiss.com emiss.com bmiss.com dmiss.com fmiss.com Nexta.com
Hit.com fmiss.com cmiss.com emiss.com Hit.com Nextb.com
Nexta.com Hit.com Hit.com Hit.com Nexta.com Nextc.com
(e
amiss.com amiss.com amiss.com cmiss.com bmiss.com Hit.com
cmiss.com emiss.com bmiss.com dmiss.com fmiss.com Nexta.com
Hit.com frmiss.com cmiss.com emiss.com Hit.com Nextb.com
Nexta.com Hit.com Hit.com Hit.com Nexta.com Nextc.com
. . ; (. ; .
amiss.com amiss.com amiss.com cmiss.com bmiss.com Hit.com
cmiss.com emiss.com bmiss.com dmiss.com fmiss.com Nexta.com
Hit.com fmiss.com cmiss.com emiss.com Hit.com Nextb.com
Nexta.com Hit.com Hit.com Hit.com Nexta.com Nextc.com

2/3/14

© 2011 Larry Snyder, CSE

40

Intersect Alphabetical Lists

(d)

(e)

(f)

(9)

2/3/14

amiss.com amiss.com amiss.com cmiss.com bmiss.com (Hit.com
cmiss.com emiss.com bmiss.com dmiss.com fmiss.com Nexta.com
Hit.com fmiss.com cmiss.com emiss.com Hit.com Nextb.com
Nexta.com Hit.com (Hit.com Hit.com Nexta.com Nextc.com
(
amiss.com amiss.com amiss.com cmiss.com bmiss.com Hit.com
cmiss.com emiss.com bmiss.com dmiss.com fmiss.com Nexta.com
Hit.com fmiss.com cmiss.com emiss.com Hit.com Nextb.com
Nexta.com Hit.com (Hit.com Hit.com Nexta.com Nextc.com
(
amiss.com amiss.com amiss.com cmiss.com bmiss.com Hit.com
cmiss.com emiss.com [bmiss.com dmiss.com fmiss.com Nexta.com
Hit.com fmiss.com cmiss.com emiss.com Hit.com Nextb.com
Nexta.com Hit.com (Hit.com Hit.com Nexta.com Nextc.com
(
amiss.com amiss.com amiss.com cmiss.com bmiss.com Hit.com
cmiss.com emiss.com [bmiss.com dmiss.com fmiss.com Nexta.com
Hit.com fmiss.com cmiss.com emiss.com Hit.com Nextb.com
Nexta.com Hit.com (Hit.com Hit.com Nexta.com Nextc.com

© 2011 Larry Snyder, CSE

41

Does IAL Work?

Think about what makes the algorithm work?

A barrier is an imaginary ragged line across all lists
marking the position of a URL that is a hit:

amiss.com amiss.com amiss.com cmiss.com bmiss.com Hit.com
cmiss.com emiss.com bmiss.com dmiss.com fmiss.com Nexta.com
Hit.com fmiss.com cmiss.com emiss.com Hit.com Nextb.com
Nexta.com s Hit.com Hit.com Hit.com = Nexta.com Nextc.com
\ | \
At Step > all 1. Place a marker at head of every list
2. If all markers point to same URL, record a hit
markers are at 3. Advance marker on alphabetically earliest list(s)
4. If any list is finished stop; otherwise go to step 2
a barrier
2/3/14 © 2011 Larry Snyder, CSE 42

Operating Between 2 Barriers

Points to notice: —
AL starts at a barrier (1)

All markers ‘step across’
barrier together

No marker crosses w/o others

43

It is not sufficient to think up a clever
algorithm ... you need to know why it works

It's usually not tough, because the logic of
your method typically translates into an
explanation of why it works.

But you must think about it!!

Once you know it works — CS people figure
out how fast it is!

2/3/14 © 2011-2014 Larry Snyder, CSE 44

