
AP Physics 1

Chapter 7: Rotational Motion Equations

1 Introduction

θ =
s

r
(1)

• θ = angular position = radians

• s = arc length

• r = radius

s = rθ (2)

(2) is valid only if θ is measured in radians, not degrees. This relationship between angle and arc length is

one of the primary motivations for using radians.

θfull circle =
s

r
=

2π�r

�r
= 2π rad (3)

We can use this fact to write conversion factors among revolutions, radians, and degrees.

1 rev = 360◦ = 2π rad (4)
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1 rad = 1��rad×
360◦

2π��rad
= 57.3◦ (5)

ω =
angular displacement

time interval
=

∆θ

∆t
(6)

Angular velocity of a particle in uniform circular motion.

• ω = omega = angular velocity = rad
s

θf − θi = ∆θ = ω∆t (7)

Angular displacement for uniform circular motion.

For linear motion, we use the term speed v when we are not concerned with the direction of motion, velocity vx,

when we are. For circular motion, we define the angular speed to be the absolute value of the angular velocity,

so that it’s a positive quantity irrespective of the particle’s direction of rotation. Although potentially

confusing, it is customary to use the symbol ω for angular speed and angular velocity. If the direction of

rotation is not important, we will interpret ω to mean angular speed. In kinematic equations, ω is always

the angular velocity, and you need to use a negative value for clockwise motion.

v = ωr (8)

Relationship between speed and angular speed

ω must be in units of rad/s. If you are given a frequency in rev/s or rpm, you should convert it to an angular

speed in rad/s.

ω =
2π rad

T
= (2π rad)f (9)

• f = must be in rev
s
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α =
change in angular in velocity

time interval
=

∆ω

∆t
(10)

Angular acceleration for a particle in nonuniform circular motion.

NB: Don’t confuse the angular acceleration with the centripetal acceleration. The angular acceleration

indicates how rapidly the angular velocity is changing. The centripetal acceleration is a vector quantity that

points toward the center of a particle’s circular path; it is nonzero even if the angular velocity is constant.

• α = alpha = rad
s2

ac =
v2

r
=
ω2

r
(11)

The centripetal acceleration ~ac, is due to the change in the direction of the particle’s velocity and is directed

inward toward the center of the circle. If a particle is undergoing angular acceleration, its angular speed

is changing and, therefore, so is its speed. This means that the particle will have another component to

acceleration. Because the magnitude of the velocity is increasing, this second component of acceleration is

directed tangentially to the circle, in the same direction as the velocity. This component of acceleration

is called the tangential acceleration. The tangential acceleration measures the rate at which the particle’s

speed around the circle is increases. Thus its magnitude is

at =
∆v

∆t
(12)

We can relate tangential acceleration to the angular acceleration by using the relationship v = ωr between

the speed of a particle moving in a circle of radius r and its angular velocity ω. We have

at =
∆v

∆t
=

∆(ωr)

∆t
=

∆ω

∆t
r (13)

And given that α = ∆ω
∆t , we can conclude

at = αr (14)

Relationship between tangential and angular acceleration

• αt = tangential acceleration = m
s2

All points on a rotating rigid body have the same angular acceleration. However, the centripetal and

tangential acceleration of a point on a rotating object depend on the point’s distance r from the axis, so

these accelerations are not the same for all points.
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τ = rF⊥ (15)

Torque due to a force with perpendicular component F⊥ acting at a distance r from the pivot

• τ = N · m

• F⊥ = The perpendicular component ~F⊥ is pronounced “F perpendicular”. The parallel component ~F‖
is “F parallel.”

τ = r⊥F (16)

Torque due to a force F with a moment arm r⊥

τ = rFsinφ (17)

where φ is the angle between the radial line and the direction of the force. Torque differs from a force in

a very important way. Torque is calculated or measured about a particular point. To say that a torque of

50 N · m is meaningless without specifying the point about which the torque is calculated. Torque can be

calculated about any point, but its value depends on the point chosen because this choice determines r and

φ. In practice, we usually calculate torques about a hinge, pivot, or axle. A torque that tends to rotate

the object in a counterclockwise direction is positive, while a torque that tends to rotate the object in a

clockwise direction is negative.
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τnet = τ1 + τ2 + τ3 + τ4 . . . =
∑

τ (18)

• τnet is analogous to Fnet

xcg =
x1m1 + x2m2

m1 +m2
(19)

• xcg = position of the center of gravity = m

• = center of gravity
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at =
F

m
(20)

Now the tangential and angular acceleration are related by at = αr, so we can rewrite (20) as αr = F
m or

α =
F

mr
(21)

We can now connect the angular acceleration to the torque because force ~F , which is perpendicular to the

radial line, exerts torque

τ = rF (22)

With this relationship between F and τ , we can rewrite (18) as

α =
τ

mr2
(23)

(2) gives us a relationship between the torque on a single particle and its angular acceleration. Now all that

remains is to expand this idea from a single particle to an extended object.

τ1 = m1r
2
1α τ2 = m2r

2
2α τ3 = m3r

2
3α (24)

and so one for every particle in the object. If we add up all these torques, the net torque on the object is

τnet = τ1 + τ2 + τ3 + . . . = m1r
2
1α+m2r

2
2α+m3r

3
1α+ . . . = α(m1r

2
1 +m2r

2
2 +m3r

2
3 + . . .) =

α
∑

m1r
2
1 (25)

By factoring out α out of the sum, we’re making explicit use of the fact that every particle in a rotating

rigid body has the same angular acceleration α. The quantity
∑
mr2 in (21), which is the proportionality

constant between angular acceleration and net torque, is called the object’s moment of inertia, I.

I = m1r
2
1 +m2r

2
2 +m3r

2
3 =

∑
mir

2
i (26)

• I = moment of inertia = kg ·m2
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Moment of inertia of a collection of particles. The word “moment” in “moment of inertia” and “moment

arm” has nothing to do with time. It stems from the Latin momentum, meaning “motion.” Substituting the

moment of inertia into (22) puts the final piece of the puzzle into place, giving us the fundamental equation

for a rigid-body dynamics.

α =
τnet
I

(27)

Newton’s Second Law for Rotation.

An object that experiences a net torque τnet about the axis of rotation undergoes an angular acceleration

where I is the moment of inertia of the object about the rotation axis. In practice we often write τnet = Iα,

but (24) better conveys the idea that net torque is the cause of angular acceleration. In the absence of a net

torque (τ = 0), the object has zero angular acceleration α, so it either does not rotate (ω = 0) or rotates

with a constant angular velocity (ω = constant). Moment of inertia is the rotational equivalent of

mass.
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vobj = ωR (28)

aobj = αR (29)

Motion constraints for an object connected to a pulley of radius R by a nonslipping rope.

Assuming the object doesn’t slip, in one revolution the center moves forward exactly one revolution, so that

∆x = 2πR. The time for the object to turn one revolution is its period T , so we can compute the speed of

the object’s center as

v =
∆x

T
=

2πR

T
(30)

But 2πR/T is the angular velocity ω, which leads to

v = ωR (31)

(31) is the rolling constraint, the basic link between translation and rotation for objects that roll without

slipping.
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