AP Physics 1

Chapter 7: Rotational Motion Equations

1 Introduction

e 0 = angular position = radians
e s = arc length

e r = radius
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(2) is valid only if 8 is measured in radians, not degrees. This relationship between angle and arc length is
one of the primary motivations for using radians.

2
afull circle = ; = 7 = 2w rad (3)

We can use this fact to write conversion factors among revolutions, radians, and degrees.

1 rev = 360° = 27 rad (4)
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1 rad = 1 zad x =57.3° (5)

_angular displacement A6

time interval At

Angular velocity of a particle in uniform circular motion.

e w = omega = angular velocity = %d

0f — 0; = AO = wAt (7)

Angular displacement for uniform circular motion.

For linear motion, we use the term speed v when we are not concerned with the direction of motion, velocity v,,
when we are. For circular motion, we define the angular speed to be the absolute value of the angular velocity,
so that it’s a positive quantity irrespective of the particle’s direction of rotation. Although potentially
confusing, it is customary to use the symbol w for angular speed and angular velocity. If the direction of
rotation is not important, we will interpret w to mean angular speed. In kinematic equations, w is always
the angular velocity, and you need to use a negative value for clockwise motion.

v =wr (8)

Relationship between speed and angular speed

w must be in units of red/s. If you are given a frequency in 7ev/s or rpm, you should convert it to an angular
speed in rad/s.
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change in angular in velocity — Aw

= — 1
time interval At (10)

Angular acceleration for a particle in nonuniform circular motion.

NB: Don’t confuse the angular acceleration with the centripetal acceleration. The angular acceleration
indicates how rapidly the angular velocity is changing. The centripetal acceleration is a vector quantity that
points toward the center of a particle’s circular path; it is nonzero even if the angular velocity is constant.

rad

e a = alpha = 73

v? w?

a== )
The centripetal acceleration d., is due to the change in the direction of the particle’s velocity and is directed
inward toward the center of the circle. If a particle is undergoing angular acceleration, its angular speed
is changing and, therefore, so is its speed. This means that the particle will have another component to
acceleration. Because the magnitude of the velocity is increasing, this second component of acceleration is
directed tangentially to the circle, in the same direction as the velocity. This component of acceleration
is called the tangential acceleration. The tangential acceleration measures the rate at which the particle’s
speed around the circle is increases. Thus its magnitude is

_Av
At
We can relate tangential acceleration to the angular acceleration by using the relationship v = wr between
the speed of a particle moving in a circle of radius r and its angular velocity w. We have

Qg (12)

Av  Awr) Aw
ag = =

“ AT A A (13)

Aw

A7, we can conclude

And given that a =
a; = ar (14)
Relationship between tangential and angular acceleration
e «; = tangential acceleration = 77
All points on a rotating rigid body have the same angular acceleration. However, the centripetal and

tangential acceleration of a point on a rotating object depend on the point’s distance r from the axis, so
these accelerations are not the same for all points.



Linear Quantities

x - displacement (in m)

v - velocity (in m/fs)

a - acceleration (in m/s%)
t - time (in sec)

m - mass (in kg)

F - force {in N}

Ek - Kinetic Energy (in I)
p - momentum (kgm/s)

Rotational Quantities
0 - Angular Displacement (in rad)
@ - Angular velocity (in rad/sec)

o - Angular acceleration (in rad/sec’)

t - time (in sec)

I - moment of inertia (in kgmz}
T - torgue (in Nm)

Ek - kinetic energy (in I)

L - angular momentum {kgmlfsec}

SYNTHESIS 7.1 Linear and circular motion

The variables and equations for linear motion have analogs for circular motion.

Linear motion

Circular motion
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T = TFL (15)
Torque due to a force with perpendicular component F'|, acting at a distance r from the pivot
e7=N-m

e F'| = The perpendicular component F|is pronounced “F perpendicular”. The parallel component 13”
is “F parallel.”

T = TJ_F (16)

Torque due to a force F' with a moment arm r;

T =rFsing (17)

where ¢ is the angle between the radial line and the direction of the force. Torque differs from a force in
a very important way. Torque is calculated or measured about a particular point. To say that a torque of
50 N - m is meaningless without specifying the point about which the torque is calculated. Torque can be
calculated about any point, but its value depends on the point chosen because this choice determines r and
¢. In practice, we usually calculate torques about a hinge, pivot, or axle. A torque that tends to rotate
the object in a counterclockwise direction is positive, while a torque that tends to rotate the object in a
clockwise direction is negative.

FIGURE 7.16 The four forces are the same
strength, but they have different effects
on the swinging door.
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FIGURE 7.17 Force F exerts a torque
about the pivot point.

Point of
application
of force

¢ is the angle between
the radial line and the
direction of the force.

FIGURE 7.18 Torgue is due to the
component of the force perpendicular to
the radial line.

The component of F

that is perpendicular -
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causes d lorque. -

The parallel
component does
not contribute to
the torgue.



FIGURE 7.19 You can also calculate
torque in terms of the moment arm
between the pivot and the line of action.

The line of action extends /
in the direction of the force -’
vector and passes through
the point at which the F
force acts.

I
,'_ Line of
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The moment arm f: ' \\
extends from the pivot
to the line of action . . .

. and is perpendicular
to the line of action.

FIGURE 7.21 Signs and strengths of the torque.

.. A positive torque tries to rotate the
object counterclockwise about the pivot.

Maximum positive torque for a force

perpendicular to the radial line e o Pulling straight out from the

pivot exerts zero torque.
Pushing straight toward the --..
pivot exerts zero torque.

. A negative torque tries to rotate the

Radial line object clockwise about the pivot.

" Point where

) i
force is applied ™. \ravimum negative torque for a force

perpendicular to the radial line

‘ Pivot point

Tnet =Tl +To+T3+T4...= g T

® T,¢: is analogous to Fe;

(18)

R 1My + Tame
g = ——— 22
g m1 + mo

® 1., = position of the center of gravity = m

o & = center of gravity

(19)




TACTICS  Finding the center of gravity -'1"9

©® Choose an origin for your coordinate system. You can choose any conve-
nient point as the origin.

@ Determine the coordinates (x;, y;), (x2, ¥2), (x3, y3).. .. for the particles of
masses m,, ms, ms, . . ., respectively.

©® The x-coordinate of the center of gravity is
Xymy + xpmy + xqhy o

i

(7.15)
my+my+my+
O Similarly, the y-coordinate of the center of gravity is

Yimy + yamy + yymy + - -

.}’cg: f'n|+m2+m3+"' (?16)
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Exercises 18-21

ay =

a (20)

Now the tangential and angular acceleration are related by a; = ar, so we can rewrite (20) as ar = % or

We can now connect the angular acceleration to the torque because force ﬁ, which is perpendicular to the
radial line, exerts torque

T=rF (22)
With this relationship between F and 7, we can rewrite (18) as

a=— (23)

2
mr
(2) gives us a relationship between the torque on a single particle and its angular acceleration. Now all that
remains is to expand this idea from a single particle to an extended object.
_ 2 _ 2 _ 2
T =miria Ty = MarjQ Ty = M3TiQ (24)

and so one for every particle in the object. If we add up all these torques, the net torque on the object is

2 2 3 2 2 2
Tnet =T1 + T2+ T3+ ... =myria+ morsa+maria+ ... = a(myr] + mors +msr; +...) =
ay mr? (25)

By factoring out a out of the sum, we’re making explicit use of the fact that every particle in a rotating
rigid body has the same angular acceleration . The quantity Y mr? in (21), which is the proportionality
constant between angular acceleration and net torque, is called the object’s moment of inertia, I.

I =myr? +mors + mgrg = Z mgr? (26)

o I = moment of inertia = kg - m?



Moment of inertia of a collection of particles. The word “moment” in “moment of inertia” and “moment
arm” has nothing to do with time. It stems from the Latin momentum, meaning “motion.” Substituting the
moment of inertia into (22) puts the final piece of the puzzle into place, giving us the fundamental equation
for a rigid-body dynamics.

Tnet
a = 27
I (27)

Newton’s Second Law for Rotation.

An object that experiences a net torque 7,.; about the axis of rotation undergoes an angular acceleration
where I is the moment of inertia of the object about the rotation axis. In practice we often write 7, = I,
but (24) better conveys the idea that net torque is the cause of angular acceleration. In the absence of a net
torque (7 = 0), the object has zero angular acceleration «, so it either does not rotate (w = 0) or rotates
with a constant angular velocity (w = constant). Moment of inertia is the rotational equivalent of
mass.

SYNTHESIS 7.2 Linear and rotational dynamics

The variables for linear dynamics have analogs for rotational dynamics.
Newton’s second law for rotational dynamics is expressed in terms of these

variables.
Linear dynamics Rotational dynamics
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TABLE 7.1 Moments of inertia of objects with uniform density and total mass M

Ohject and axis Picture 1 Object and axis Picture I

Thin rod (of Lmr? Cylinder or disk,
any cross section), - about center

about center L

Thin rod (of any % M2 Cylindrical hoop,
cross section), about center

about end L

Plane or slab, Solid sphere, gMRE
about center / about diameter
b

b

S

MR?

sl
=
nr\.;

2 2
SMR

Plane or slab, Lyag? Spherical shell,
3 p
about edge / about diameter

S ——

PROBLEM-SOLVING . . 5
STRATEGY 7.1 Rotational dynamics problems (mp)

We can use a problem-solving strategy for rotational dynamics that is very
similar to the strategy for linear dynamics in Chapter 5.

PREPARE Model the object as a simple shape. Draw a pictorial representation to
clarify the situation, define coordinates and symbols, and list known information.
B [dentify the axis about which the object rotates.

B [dentify the forces and determine their distance from the axis.

B Calculate the torques caused by the forces, and find the signs of the torques.

soLve The mathematical representation is based on Newton’s second law for
rotational motion:

Tl'lr&[

I

B Find the moment of inertia either by direct calculation using Equation 7.21
or from Table 7.1 for common shapes of objects.
B Use rotational kinematics to find angular positions and velocities.

Toer = Jax or a=

assess Check that your result has the correct units, is reasonable, and answers
the question.
Exercise 31 4
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Vobj = WR (28)

aopj = R} (29)

Motion constraints for an object connected to a pulley of radius R by a nonslipping rope.

Assuming the object doesn’t slip, in one revolution the center moves forward exactly one revolution, so that
Axz = 27 R. The time for the object to turn one revolution is its period T', so we can compute the speed of
the object’s center as

V= = —— (30)
But 27R/r is the angular velocity w, which leads to

v=wR (31)

(31) is the rolling constraint, the basic link between translation and rotation for objects that roll without
slipping.

11



GEMERAL PRINCIPLES l
Newton’s Second Law for Rotational Motion

I a net torgue 7, acts on an object, the object will experience an
angular acceleration given by o = 1, /1, where [ is the object’s
merment of inertia about the rotalion axs.

IMPORTANT CONCEPTS |

Describing circular motion

We define new variables for circular motion. By convention,
counterclockwise is pogitive,

Angular displacement: Af = f; — &

Ad

Angular velocity: "= m
. A
Angular acceleration: o= m

Angles are measured in radians:
I rev = 360F = 2 rul

The angular velocity depends 2 5

on the frequency and penod: T T iy

Relating linear and circular motion guantities

Linear and angular
speeds are related by:

g lar
welcily

vV — ar

L3
If the particle’s speed is increasing, \
it will also have a tangential
acceleration d, directed tangent
the circle amd an angular

acceleration e Y
Malocity

Tangenisal
ucceleration

Angular and tangential
accelerations are related by: o, = ar

The moment of inertia is the rotational equivalent of mass. For
an object made up of particles of masses m, m., ... at distances
. Troim the axis, the moment of inenia is

- H'I'f'1

Fi f3. . -

!_m]rﬁl mlrfl m_-;rfl

APPLICATIONS i

Moments of inertia of common shapes

When a net torque is applied o an object that rotates

Rotation about a fixed axis

This law is analogous to Newton's second law for linear motion,
i = F/m.

Torque

A force canses an object io undergo a linear acceleration, a torgque
canses an object o undergo an angular acceleration.

There are two inlerpretations of worgue:

Interpretation I: 7= r¥, Interpretation 2: = r, F

The component af f
thatl 1= perpemaicnor -
Lt the radial line =
CalsEs 1 1on s,

The moment arm ¢
exiemds from the pivot
i the line of sction

-

r i sin

Both interpretations give the same Cra
expression for the magnitude of the torque: 7= rFsind

Center of gravity
" Ciravity acts an cach The object responds as
The center of gravity of an particle that makes  §f is entine weight acts

object is the point at which up e objecl. ; al the cester of gravity.
gravity can be considered i
to be acting,

W

The position of the center of gravity depends on the
distance x|, ¥3.... of each particle of mass wmy, #s,. ..
the angin:

from

iyt gt gy o

X
< M+ my+ o+ -

Rolling motion

For an object that rolls

) , about a fixed axis, the object will undergo an angular without slipping,
M= s acceleration given by
v = whi
_ The
o T The velocity of 4 poimnl

MR /@ 1ML /;é

iy = il
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IT a rope unwinds from a pulley of radius £, the linear
miation of an object ted to the rope is related to the

ML % angular motion of the pulley by

2 the 1op of the ohject is
twice that of the canter

Vahj = wit



